Перевод: со всех языков на русский

с русского на все языки

это особенно важно для

  • 1 this is particularly significant for high-order approximations

    Математика: это особенно важно для (...)

    Универсальный англо-русский словарь > this is particularly significant for high-order approximations

  • 2 actuator

    1. рукоятка, приводящая в действие некоторый механизм
    2. приводное устройство
    3. привод контактного аппарата
    4. привод
    5. орган управления
    6. механизм конечного выключателя, воздействующий на контакты
    7. исполнительный орган
    8. исполнительный механизм
    9. защелка (для фиксации сочленения розетки и плоского печатного проводника)
    10. воздействующее устройство

     

    воздействующее устройство
    источник сигнала


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    исполнительный механизм
    Устройство для управления арматурой, предназначенное для перемещения регулирующего элемента в соответствии с командной информацией, поступающей от внешнего источника энергии.
    [ ГОСТ Р 52720-2007]

    исполнительный механизм
    Механизм, являющийся функциональным блоком, предназначенным для управления исполнительным органом в соответствии с командной информацией.
    Примечание. В системах автоматического регулирования сред исполнительный механизм предназначен для перемещения затвора регулирующего органа
    [ ГОСТ 14691-69]

    исполнительный механизм
    Силовой механизм, используемый для движения машины и ее частей.
    [ ГОСТ Р МЭК 60204-1-2007]

    EN

    (electric) actuator
    device that produces a specified movement when excited by an electric signal
    SOURCE: 351-18-46 MOD
    [IEV ref 151-13-49]

    actuator

    In electrical engineering, the term actuator refers to a mechanism that causes a device to be turned on or off, adjusted or moved, usually in response to an electrical signal. In some literature the terms actor or effector are also used. The term “effector” is preferred by programmers, whereas engineers tend to favor “actuator.”
    An example of an actuator is a motor that closes blinds in response to a signal from a sunlight detector.
    Actuators enable computers to control complex manufacturing processes without human intervention or supervision.
    [ABB. Glossary of technical terms. 2010]

    FR

    actionneur (électrique), m
    dispositif qui produit un mouvement spécifié en réponse à un signal électrique
    SOURCE: 351-18-46 MOD
    [IEV ref 151-13-49]

     

    Тематики

    EN

     

    исполнительный орган

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    механизм конечного выключателя, воздействующий на контакты

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва]

    Тематики

    • электротехника, основные понятия

    EN

     

    орган управления
    Часть системы аппарата управления, к которой прилагается извне усилие управления.
    МЭК 60050(441-15-22).
    Примечание. Орган управления может иметь форму рукоятки, ручки, нажимной кнопки, ролика, плунжера и т. п.
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    орган управления

    Часть приводного механизма, к которой прикладывается внешняя сила воздействия.
    Примечание - Орган управления может иметь форму ручки, кнопки, ролика, поршня и т.д.
    [ ГОСТ Р 52726-2007]

    орган управления
    Часть системы привода, подвергаемая внешнему силовому воздействию.
    Примечания
    1. Орган управления может иметь форму ручки, рукоятки, нажимной кнопки, ролика, плунжера и т.д.
    2. Есть несколько способов приведения в действие, которые не требуют внешнего силового воздействия, а только какого-либо действия.
    [ГОСТ ЕН 1070-2003]

    орган управления
    Часть системы управления, которая предназначена непосредственно для воздействия оператором, например путем нажатия.
    [ГОСТ Р ЕН 614-1-2003]

    орган управления

    Часть системы приведения в действие, которая принимает воздействие человека.
    [ ГОСТ Р МЭК 60447-2000]

    орган управления
    Часть системы приведения в действие, которая воспринимает воздействие человека (ГОСТ Р МЭК 60447).
    Примечание
    В настоящем стандарте орган управления в виде интерактивного экранного устройства отображения является частью этого устройства, которое представляет функцию органа управления.
    [ ГОСТ Р МЭК 60073-2000]

    орган управления
    Часть механизма прибора управления, на который оказывается вручную внешнее силовое воздействие.
    Примечание.
    Орган управления может иметь форму ручки, рукоятки, кнопки, ролика, плунжера и т.д.
    Некоторые органы управления не требуют воздействия внешней силы, а только какого-либо действия.
    [ ГОСТ Р МЭК 60204-1-2007]

    органы управления
    Ручки, переключатели, потенциометры и другие органы, служащие для включения и регулировки аппаратуры. Термин относится преимущественно к аналоговым приборам.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    орган управления
    -
    [IEV number 442-04-14]

    средства оперирования
    -

    [Интент]

    EN

    actuator
    the part of the actuating system to which an external actuating force is applied
    NOTE – The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    [IEV number 441-15-22]

    actuator
    part of a device to which an external manual action is to be applied
    NOTE 1 The actuator may take the form of a handle, knob, push-button, roller, plunger, etc.
    NOTE 2 There are some actuating means that do not require an external actuating force, but only an action.
    NOTE 3 See also 3.34.
    [IEC 60204-1 -2005]

    actuating member
    a part which is pulled, pushed, turned or otherwise moved to cause an operation of the switch
    [IEV number 442-04-14]

    FR

    organe de commande
    partie du mécanisme transmetteur à laquelle un effort extérieur de manoeuvre est appliqué
    NOTE – L'organe de commande peut prendre la forme d'une poignée, d'un bouton, d'un bouton-poussoir, d'une roulette, d'un plongeur, etc.
    [IEV number 441-15-22]

    organe de manoeuvre
    partie qui est tirée, poussée, tournée ou manipulée de toute autre façon pour provoquer le fonctionnement de l'interrupteur
    [IEV number 442-04-14]


    Аппарат должен оставаться механически действующим. Не допускается сваривание контактов, препятствующее операции размыкания при использовании нормальных средств оперирования.
    [ГОСТ  Р 50030.3-99 (МЭК  60947-3-99) ]

    ВДТ следует оперировать как при нормальной эксплуатации. Операции размыкания должны проводиться в следующем порядке:
    для первых 1000 циклов — с использованием ручных средств оперирования;
    ...
    [ ГОСТ Р 51326. 1-99 ( МЭК 61008-1-96)]

    Параллельные тексты EN-RU

    The operating means (for example, a handle) of the supply disconnecting device shall be easily accessible and located between 0,6 m and 1,9 m above the servicing level.
    [IEC 60204-1-2006]

    Органы управления, например, рукоятки аппаратов отключения питания, должны быть легко доступны и располагаться на высоте от 0,6 до 1,9 м от рабочей площадки.
    [Перевод Интент]

    Where the external operating means is not intended for emergency operations, it is recommended that it be coloured BLACK or GREY.
    [IEC 60204-1-2006]

    Если внешние средства оперирования не предназначены для выполнения действий при возникновении аварийных ситуаций, то рекомендуется, применять такие средства ЧЕРНОГО или СЕРОГО цвета.
    [Перевод Интент]

     

    1.2.2. Control devices

    Control devices must be:
    — clearly visible and identifiable and appropriately marked where necessary,
    — positioned for safe operation without hesitation or loss of time, and without ambiguity,
    — designed so that the movement of the control is consistent with its effect,
    — located outside the danger zones, except for certain controls where necessary, such as emergency stop, console for training of robots,
    — positioned so that their operation cannot cause additional risk,
    — designed or protected so that the desired effect, where a risk is involved, cannot occur without an intentional operation,
    — made so as to withstand foreseeable strain; particular attention must be paid to emergency stop devices liable to be subjected to considerable strain.

    1.2.2. Органы управления

    Органы управления должны быть:
    - четко видны, хорошо различимы и, где это необходимо, иметь соответствующее обозначение;
    - расположены так, чтобы ими можно было пользоваться без возникновения сомнений и потерь времени на выяснение их назначения;
    - сконструированы так, чтобы перемещение органа управления согласовывалось с их воздействием;
    - расположены вне опасных зон; исключение, где это необходимо, делается для определенных средств управления, таких, как средство экстренной остановки, пульт управления роботом;
    - расположены так, чтобы их использование не вызывало дополнительных рисков;
    - сконструированы или защищены так, чтобы в случаях, где возможно возникновение рисков, они не могли бы возникнуть без выполнения намеренных действий;
    - сделаны так, чтобы выдерживать предполагаемую нагрузку; при этом особое внимание уделяется органам аварийного останова, которые могут подвергаться значительным нагрузкам.

    Where a control is designed and constructed to perform several different actions, namely where there is no one-to-one correspondence (e.g. keyboards, etc.), the action to be performed must be clearly displayed and subject to confirmation where necessary.

    Если орган управления предназначен для выполнения разных действий, например, если в качестве органа управления используется клавиатура или аналогичное устройство, то должна выводиться четкая информация о предстоящем действии, и, если необходимо, должно выполняться подтверждение на выполнение такого действия.

    Controls must be so arranged that their layout, travel and resistance to operation are compatible with the action to be performed, taking account of ergonomic principles.

    Органы управления должны быть организованы таким образом, чтобы их расположение, перемещение их элементов и усилие, которое оператор затрачивает на их перемещение, соответствовали выполняемым операциям и принципам эргономики.

    Constraints due to the necessary or foreseeable use of personal protection equipment (such as footwear, gloves, etc.) must be taken into account.

    Необходимо учитывать скованность движений операторов при использовании необходимых или предусмотренных средств индивидуальной защиты (таких, как специальная обувь, перчатки и др.).

    Machinery must be fitted with indicators (dials, signals, etc.) as required for safe operation. The operator must be able to read them from the control position.

    Для обеспечения безопасной эксплуатации машинное оборудование должно быть оснащено индикаторами (циферблатами, устройствами сигнализации и т. д.). Оператор должен иметь возможность считывать их с места управления.

    From the main control position the operator must be able to ensure that there are no exposed persons in the danger zones.

    Находясь в главном пункте управления, оператор должен иметь возможность контролировать отсутствие незащищенных лиц.

    If this is impossible, the control system must be designed and constructed so that an acoustic and/ or visual warning signal is given whenever the machinery is about to start.

    Если это невозможно, то система управления должна быть разработана и изготовлена так, чтобы перед каждым пуском машинного оборудования подавался звуковой и/или световой предупредительный сигнал.

    The exposed person must have the time and the means to take rapid action to prevent the machinery starting up.

    [DIRECTIVE 98/37/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL]

    Незащищенное лицо должно иметь достаточно времени и средств для быстрого предотвращения пуска машинного оборудования.

    [Перевод Интент]

    Тематики

    Синонимы

    EN

    DE

    FR

     

    привод
    Устройство для приведения в действие машин и механизмов.
    Примечание
    Привод состоит из источника энергии, механизма для передачи энергии (движения) и аппаратуры управления. Источником энергии служит двигатель (тепловой, электрический, пневматический, гидравлический и др.) или устройство, отдающее заранее накопленную механическую энергию (пружинный, инерционный, гиревой механизм и др.). В некоторых случаях привод осуществляется за счет мускульной силы. По характеру распределения энергии различают групповой, индивидуальный и многодвигательный привод. По назначению привод машин разделяют на стационарный, т.е. установленный неподвижно на раме или фундаменте; передвижной, используемый на движущихся рабочих машинах; транспортный, применяемый для различных транспортных средств. В производстве применяются также гидропривод машин и пневмопривод.
    [РД 01.120.00-КТН-228-06]

    привод

    Устройство для приведения в действие машин, состоящее из двигателя, механизма передачи и системы управления
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

     

    привод контактного аппарата
    Устройство, предназначенное для создания или передачи силы, воздействующей на подвижные части контактного аппарата для выполнения функции этого аппарата.
    [ ГОСТ 17703-72]

    привод
    Устройство, предназначенное для создания и передачи силы, воздействующей на подвижные части выключателя для выполнения его функций, а также для удержания выключателя в конечном положении.
    [ ГОСТ Р 52565-2006]

    Приводы являются аппаратами для включения и удержания во включенном положении, а также отключения коммутационных аппаратов (масляного выключателя, выключателя нагрузки или разъединителя).
    С помощью приводов осуществляется ручное, автоматическое и дистанционное управление коммутационными аппаратами.

    По роду используемой энергии приводы разделяются

    • на ручные,
    • пружинные,
    • электромагнитные,
    • электродвигательные,
    • пневматические.

    По роду действия приводы бывают

    В приводах прямого действия движение включающего устройства передается непосредственно на приводной механизм выключателя в момент подачи импульса от источника энергии. Такие приводы потребляют большое количество энергии.
    В приводах косвенного действия энергия, необходимая для включения, предварительно запасается в специальных устройствах: маховиках, пружинах, грузах и т. д.
    [Цигельман И. Е. Электроснабжение гражданских зданий и коммунальных предприятий: Учеб. для электромеханич. спец. техникумов. - М.: Высш. шк. 1988.]


    Приводы служат для включения, удержания во включенном положении и отключения разъединителей и выключателей.
    Основные требования, предъявляемые к приводу выключателя, состоят в том, что каждый привод должен развивать мощность, достаточную для включения выключателя при самых тяжелых условиях работы (включение на короткое замыкание, пониженное напряжение питания), и быть быстродействующим, т. е. производить включение за весьма малый промежуток времени. При медленном включении на существующее в сети КЗ возможно приваривание контактов.
    При включении выключателя совершается большая работа по преодолению сопротивления отключающих пружин, сопротивления упругих частей контактов, трения в механизме, сопротивления масла движению подвижных частей выключателя, электродинамических сил, препятствующих включению, и др.
    При отключении привод выключателя совершает небольшую работу, необходимую только для освобождения запорного механизма, так как отключение выключателя происходит под действием его отключающих пружин.
    В зависимости от рода энергии, используемой для включения, приводы разделяются на ручные, грузовые, пружинно-грузовые, пружинные, электромагнитные, пневматические и гидравлические.

    К наиболее простым относятся ручные приводы, не требующие специального источника электроэнергии для подготовки операции включения. Однако эти приводы имеют ряд существенных недостатков: не позволяют осуществлять дистанционное включение, не могут быть применены в схемах АВР (автоматического включения резерва) и АПВ (автоматического повторного включения), требуют приложения значительной мускульной силы оператора и не позволяют получить высокие скорости подвижных контактов выключателя, необходимые при больших токах КЗ.
    Более совершенными, имеющими большие возможности, но в то же время и более сложными являются грузовые и пружинные приводы, которые обеспечивают значительно более высокие скорости включения выключателя по сравнению с ручными. Это в свою очередь позволяет увеличить включающую способность выключателя. Грузовые и пружинные приводы включают выключатель за счет заранее накопленной энергии поднятого груза или заведенной пружины. Накопление достаточного количества энергии может производиться в течение сравнительно большого промежутка времени (десятки секунд), поэтому мощность электродвигателей таких приводов может быть небольшой (0,1—0.3 кВт).

    Электромагнитные приводы включают выключатель за счет энергии включающего электромагнита. Электромагнитные приводы предназначены для работы на постоянном токе. Питание их осуществляют от аккумуляторных батарей или выпрямителей. По способу питания энергией приводы подразделяют на две группы: прямого и косвенного действия.

    У приводов прямого действия энергия, расходуемая на включение, сообщается приводу во время процесса включения. К приводам прямого действия относятся ручные с использованием мускульной силы человека и электромагнитные или соленоидные приводы. Работа приводов косвенного действия основана на предварительно запасаемой энергии. К таким приводам относятся грузовые, пружинно-грузовые и пружинные приводы, а также пневматические и гидравлические. Последние два типа приводов не нашли широкого применения для выключателей 6—10 кВ и поэтому нами не рассматриваются.
    Приводы прямого действия по конструкции более просты по сравнению с приводами косвенного действия, и в этом их преимущество. Однако поскольку приводы прямого действия питаются от источника энергии непосредственно во время процесса включения выключателя, то потребляемая ими мощность во много раз больше, чем у приводов косвенного действия. Это — существенный недостаток приводов прямого действия.
    Ко всем приводам выключателей предъявляют требование наличия механизма свободного расцепления, т. е. возможности освобождения выключателя от связи с удерживающим и заводящим механизмами привода при срабатывании отключающего устройства и отключения выключателя под действием своих отключающих пружин. Современные приводы имеют свободное расцепление почти на всем ходу контактов, т. е. практически в любой момент от начала включения может произойти отключение. Это особенно важно при включении на КЗ. В этом случае отключение произойдет в первый же момент возникновения дуги, что предотвратит опасность сильного оплавления и сваривания контактов.

    [http://forca.ru/stati/podstancii/privody-razediniteley-i-maslyanyh-vyklyuchateley-6-10-kv-i-ih-remont.html]

    Тематики

    • выключатель, переключатель
    • высоковольтный аппарат, оборудование...

    Классификация

    >>>

    Синонимы

    EN

    Смотри также

     

    приводное устройство

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    рукоятка, приводящая в действие некоторый механизм

    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    EN

    3.3.15 орган управления (actuator): Часть системы управления, к которой прилагают извне усилие управления.

    Примечание- Орган управления может иметь форму рукоятки, нажимной кнопки и т.д.

    Источник: ГОСТ Р 51731-2010: Контакторы электромеханические бытового и аналогичного назначения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > actuator

  • 3 NIC

    1. ядерный информационный центр
    2. система управления ядерным оборудованием АЭС
    3. Сетевой Информационный Центр
    4. сетевой адаптер
    5. сетевая интерфейсная плата
    6. сетевая интерфейсная карта (плата)
    7. почти мгновенное компандирование
    8. информационный центр сети

     

    информационный центр сети

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    почти мгновенное компандирование
    Метод адаптивного компандирования в PCM кодере, при котором сигнал с выхода АЦП разбивается на блоки по N отсчетов в каждом (обычно N =8-16). Из N отсчетов в каждом блоке определяется тот, который имеет максимальный уровень: относительно него осуществляется перекодирование всех остальных (N-1) отсчетов. Такой метод позволяет снизить скорость передачи по сравнению с РСМ-64 до 32-56 кбит/с при сохранении заданного качества передачи.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    Сетевой Информационный Центр
    Изначально этот центр был единственным, располагался при SRI International и решал задачи управления сетью сообщества ARPANET (позднее и DDN). Сегодня существует множество центров на уровне локальных, региональных и национальных сетей по всему миру. Такие центры обеспечивают поддержку пользователей, доступ к документам, обучение и многое другое. 
    [ http://www.lexikon.ru/dict/net/index.html]

    Тематики

    EN

     

    сетевая интерфейсная карта (плата)
    Плата, реализующая определенный стандарт ЛВС и системный интерфейс ПЭВМ, например Ethernet и AT-bus, и поддерживаемая соответствующей сетевой ОС, например Netware фирмы Novell.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    сетевая интерфейсная плата
    Сетевой адаптер, устанавливаемый в компьютер и позволяющий осуществить связь в локальной сети. Типовая плата адаптера имеет 6-байтовый номер: первые три цифры указывают на производителя, а следующие три являются ее уникальным номером.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сетевая карта
    сетевой адаптер
    сетевой интерфейс

    Компонент компьютера для подключения к вычислительной сети.
    [ http://www.morepc.ru/dict/]

    сетевой адаптер
    Периферийное устройство (плата), обеспечивающее соединение компьютера и ЛВС. 
    [ http://www.lexikon.ru/dict/net/index.html]


    Сетевой адаптер (NIC: Network Interface Card) -
    устройство, выполняющее функции сопряжения ЭВМ с каналами связи; они реализуют ввод-вывод данных с оконечного оборудования в сеть.

    Сетевые адаптеры (другие названия - сетевые карты, интерфейсные карты, сетевые платы) имеют передающую и принимающую части, которые в случае поддержки полного дуплекса должны быть независимы друг от друга.

    Функции сетевых адаптеров

    Функции передающей части:

    • принять от центрального процессора блок данных и адрес назначения;
    • сформировать кадр (добавить свой адрес в поле адреса источника, CRC-код и пр.);
    • получить доступ к среде передачи;
    • передать кадр;
    • в случае обнаружения коллизии повторить передачу;
    • сообщить процессору об успехе или невозможности передачи.

    Функции приемной части:

    • просмотр заголовков всех кадров, проходящих в линии;
    • извлечение из линии кадров, адресованных данному узлу;
    • помещение кадра в собственный буфер памяти;
    • проверка кадра на отсутствие ошибок (проверка по длине кадра, по CRC);
    • уведомление центрального процессора о приеме кадра;
    • передача кадра из локального буфера адаптера в системную память.

    Архитектура сетевых адаптеров

    Обязательные узлы адаптеров:

    • физический интерфейс подключения к среде передачи и схемы организации доступа к среде передачи;
    • буферная память для передаваемых и принимаемых кадров;
    • схема прерываний для уведомления центрального процессора об асинхронных событиях (таких, как завершение передачи, прием кадра);
    • средства доставки кадра между буфером кадров и системной памятью;
    • устройство управления, реализующее логику работы адаптера.

    Дополнительные узлы адаптеров:

    • микросхема ПЗУ удаленной загрузки:
      на плате адаптера может располагаться микросхема постоянного запоминающего устройства (так же называемая Boot ROM) для создания т.н. бездисковых рабочих станций. Это компьютеры, в которых нет ни винчестера, ни флоппи-дисководов. Загрузка операционной системы выполняется из сети, и выполняет ее программа, записанная в микросхеме дистанционной загрузки;
    • средства "пробуждения" по сети;
    • собственный процессор.

    Факторы, влияющие на скорость обмена данными
    Скорость обмена данными по сети зависит от нескольких факторов:

    1. от скорости передачи данных между локальной памятью адаптера и системной памятью;
    2. от возможности параллельного выполнения нескольких операций;

    Скорость передачи данных между локальной памятью адаптера и системной памятью, в свою очередь, зависит от средств "доставки". Существуют различные средства "доставки" данных между локальным буфером и системной памятью:

    • каналы прямого доступа к памяти (DMA) - это довольно медленная транспортировка данных;
    • программный ввод/вывод (PIO) - данное средство действует более быстро, но полностью загружает центральный процессор на время передачи;
    • прямое управление шиной - это средство наиболее эффективно при наличии собственного процессора (не загружается центральный процессор, что особенно важно для серверов).

    Классификация адаптеров

    Адаптеры можно подразделить на адаптеры для рабочих станций и адаптеры для серверов.
    Адаптеры для рабочих станций проще и дешевле, скорость - до 100 Мбит/с, полный дуплекс используется редко. Распространены двухскоростные адаптеры: 10/100 Мбит/с. Часто имеют функцию "пробуждения по сети" (remote wake up).
    Адаптеры для серверов наделяются интеллектом для прямого управления шиной и параллельной работы узлов адаптера. Выполняют некоторые задачи управления трафиком. Типовая скорость - 100 Мбит/с.

    Разъемы адаптеров
    Адаптеры могут иметь по нескольку (обычно не более 2) разъемов:

    • BNC - байонетный разъем для коаксиального кабеля;
    • AUI - розетка для подключения внешнего адаптера (трансивера);
    • RJ-45 - восьмиконтактное гнездо для подключения кабеля "витая пара";
    • SC - оптический разъем для подключения оптоволоконного кабеля.

    При наличии нескольких разъемов одновременно они использоваться не могут.

    Многопортовые серверные карты имеют несколько независимых адаптеров, каждый - со своим интерфейсом.

    BNC-разъем предназначен для подключения Т-коннектора (тройниковый соединитель). Т-коннектор с одной стороны подключается к сетевому адаптеру, а с двух других сторон к нему подключаются отрезки тонкого коаксиального кабеля с соответствующими разъемами на концах.

    На открытых концах сети помещаются специальные заглушки - терминаторы, которые подключаются к свободным конца Т-коннекторов (коаксиальные разъемы, в корпусе которых установлен резистор с сопротивлением 50 Ом). Корпус одного из терминаторов должен быть заземлен. В каждом сегменте сети можно соединять только один терминатор.

    AUI-розетка предназначена для подключения трансиверного кабеля. Этот многожильный экранированный кабель соединяет рабочую станцию с устройством, называемым трансивером. Трансивер служит для подключения рабочей станции к толстому коаксиальном кабелю. На корпусе трансивера имеется 3 разъема: два - для подключения толстого коаксиального кабеля и один - для подключения трансиверного кабеля.

    Между собой трансиверы соединяются отрезками толстого коаксиального кабеля с припаянными к их концам коаксиальными разъемами.

    Системные ресурсы
    Сетевые карты потребляют следующие системные ресурсы компьютера:

    • Пространство ввода-вывода -
      используется для обращения к регистрам адаптера при инициализации, текущем управлении, опросе состояния, передаче данных.
    • Запрос прерывания -
      это одна линия (IRQ 3, 5, 7, 9, 10, 11, 12 или 15), активизируемая по приему кадра, адресованного данному узлу, а также по окончании передачи кадра. Прерывания - самый дефицитный ресурс ПК, из-за него часто возникают конфликты. Без прерываний сетевые карты работать не могут, при некорректном назначении обращения к сети - "зависают". Используемый номер прерывания должен быть с помощью CMOS Setup компьютера закреплен за шиной, на которой установлен адаптер.
    • Канал прямого доступа к памяти (DMA) -
      используется в некоторых старых картах ISA/EISA.
    • Разделяемая память адаптера (adapter RAM) -
      буфер для передаваемых и принимаемых кадров. Для карт ISA обычно приписывается к области верхней памяти (UMA). Карты PCI могут располагаться в любом месте адресного пространства, не занятого оперативной памятью компьютера. Разделяемую память используют не все модели карт.
    • Постоянная память адаптера (adapter ROM) -
      область адресов для модулей расширения ROM BIOS. Используется для установки ПЗУ удаленной загрузки и антивирусной защиты.

    Конфигурирование
    Конфигурирование адаптера - настройка на использование системных ресурсов компьютера и выбор среды передачи. Способы конфигурирования зависят от модели карты:

    • с помощью переключателей (джамперов), установленных на карте. Используется на адаптерах первых поколений шины ISA;
    • Если сетевой адаптер не поддерживает стандарт Plug&Play, то, перед тем как вставить сетевой адаптер в материнскую плату компьютера, необходимо с помощью переключателей, расположенных на плате адаптера задать правильные значения для портов ввода/вывода, канала прерывания, базовый адрес ПЗУ дистанционной загрузки бездисковой станции.
    • с помощью специальных утилит - для карт на шинах ISA, EISA, MCA;
    • автоматическое конфигурирование - P&P для шин ISA и PCI. Распределение ресурсов осуществляется на этапе загрузки ОС.

    [ http://sharovt.narod.ru/l09.htm]

    Тематики

    Синонимы

    EN

     

    сетевой информационный центр
    Узел, ответственный за информационное обеспечение сети и предоставление услуг, связанных с регистрацией абонентов, организацией доступа к сетевому каталогу и др.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    система управления ядерным оборудованием АЭС

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    ядерный информационный центр

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > NIC

  • 4 network interface card

    1. сетевой адаптер
    2. сетевая интерфейсная плата
    3. сетевая интерфейсная карта (плата)

     

    сетевая интерфейсная карта (плата)
    Плата, реализующая определенный стандарт ЛВС и системный интерфейс ПЭВМ, например Ethernet и AT-bus, и поддерживаемая соответствующей сетевой ОС, например Netware фирмы Novell.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    сетевая интерфейсная плата
    Сетевой адаптер, устанавливаемый в компьютер и позволяющий осуществить связь в локальной сети. Типовая плата адаптера имеет 6-байтовый номер: первые три цифры указывают на производителя, а следующие три являются ее уникальным номером.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]

    Тематики

    • электросвязь, основные понятия

    EN

     

    сетевая карта
    сетевой адаптер
    сетевой интерфейс

    Компонент компьютера для подключения к вычислительной сети.
    [ http://www.morepc.ru/dict/]

    сетевой адаптер
    Периферийное устройство (плата), обеспечивающее соединение компьютера и ЛВС. 
    [ http://www.lexikon.ru/dict/net/index.html]


    Сетевой адаптер (NIC: Network Interface Card) -
    устройство, выполняющее функции сопряжения ЭВМ с каналами связи; они реализуют ввод-вывод данных с оконечного оборудования в сеть.

    Сетевые адаптеры (другие названия - сетевые карты, интерфейсные карты, сетевые платы) имеют передающую и принимающую части, которые в случае поддержки полного дуплекса должны быть независимы друг от друга.

    Функции сетевых адаптеров

    Функции передающей части:

    • принять от центрального процессора блок данных и адрес назначения;
    • сформировать кадр (добавить свой адрес в поле адреса источника, CRC-код и пр.);
    • получить доступ к среде передачи;
    • передать кадр;
    • в случае обнаружения коллизии повторить передачу;
    • сообщить процессору об успехе или невозможности передачи.

    Функции приемной части:

    • просмотр заголовков всех кадров, проходящих в линии;
    • извлечение из линии кадров, адресованных данному узлу;
    • помещение кадра в собственный буфер памяти;
    • проверка кадра на отсутствие ошибок (проверка по длине кадра, по CRC);
    • уведомление центрального процессора о приеме кадра;
    • передача кадра из локального буфера адаптера в системную память.

    Архитектура сетевых адаптеров

    Обязательные узлы адаптеров:

    • физический интерфейс подключения к среде передачи и схемы организации доступа к среде передачи;
    • буферная память для передаваемых и принимаемых кадров;
    • схема прерываний для уведомления центрального процессора об асинхронных событиях (таких, как завершение передачи, прием кадра);
    • средства доставки кадра между буфером кадров и системной памятью;
    • устройство управления, реализующее логику работы адаптера.

    Дополнительные узлы адаптеров:

    • микросхема ПЗУ удаленной загрузки:
      на плате адаптера может располагаться микросхема постоянного запоминающего устройства (так же называемая Boot ROM) для создания т.н. бездисковых рабочих станций. Это компьютеры, в которых нет ни винчестера, ни флоппи-дисководов. Загрузка операционной системы выполняется из сети, и выполняет ее программа, записанная в микросхеме дистанционной загрузки;
    • средства "пробуждения" по сети;
    • собственный процессор.

    Факторы, влияющие на скорость обмена данными
    Скорость обмена данными по сети зависит от нескольких факторов:

    1. от скорости передачи данных между локальной памятью адаптера и системной памятью;
    2. от возможности параллельного выполнения нескольких операций;

    Скорость передачи данных между локальной памятью адаптера и системной памятью, в свою очередь, зависит от средств "доставки". Существуют различные средства "доставки" данных между локальным буфером и системной памятью:

    • каналы прямого доступа к памяти (DMA) - это довольно медленная транспортировка данных;
    • программный ввод/вывод (PIO) - данное средство действует более быстро, но полностью загружает центральный процессор на время передачи;
    • прямое управление шиной - это средство наиболее эффективно при наличии собственного процессора (не загружается центральный процессор, что особенно важно для серверов).

    Классификация адаптеров

    Адаптеры можно подразделить на адаптеры для рабочих станций и адаптеры для серверов.
    Адаптеры для рабочих станций проще и дешевле, скорость - до 100 Мбит/с, полный дуплекс используется редко. Распространены двухскоростные адаптеры: 10/100 Мбит/с. Часто имеют функцию "пробуждения по сети" (remote wake up).
    Адаптеры для серверов наделяются интеллектом для прямого управления шиной и параллельной работы узлов адаптера. Выполняют некоторые задачи управления трафиком. Типовая скорость - 100 Мбит/с.

    Разъемы адаптеров
    Адаптеры могут иметь по нескольку (обычно не более 2) разъемов:

    • BNC - байонетный разъем для коаксиального кабеля;
    • AUI - розетка для подключения внешнего адаптера (трансивера);
    • RJ-45 - восьмиконтактное гнездо для подключения кабеля "витая пара";
    • SC - оптический разъем для подключения оптоволоконного кабеля.

    При наличии нескольких разъемов одновременно они использоваться не могут.

    Многопортовые серверные карты имеют несколько независимых адаптеров, каждый - со своим интерфейсом.

    BNC-разъем предназначен для подключения Т-коннектора (тройниковый соединитель). Т-коннектор с одной стороны подключается к сетевому адаптеру, а с двух других сторон к нему подключаются отрезки тонкого коаксиального кабеля с соответствующими разъемами на концах.

    На открытых концах сети помещаются специальные заглушки - терминаторы, которые подключаются к свободным конца Т-коннекторов (коаксиальные разъемы, в корпусе которых установлен резистор с сопротивлением 50 Ом). Корпус одного из терминаторов должен быть заземлен. В каждом сегменте сети можно соединять только один терминатор.

    AUI-розетка предназначена для подключения трансиверного кабеля. Этот многожильный экранированный кабель соединяет рабочую станцию с устройством, называемым трансивером. Трансивер служит для подключения рабочей станции к толстому коаксиальном кабелю. На корпусе трансивера имеется 3 разъема: два - для подключения толстого коаксиального кабеля и один - для подключения трансиверного кабеля.

    Между собой трансиверы соединяются отрезками толстого коаксиального кабеля с припаянными к их концам коаксиальными разъемами.

    Системные ресурсы
    Сетевые карты потребляют следующие системные ресурсы компьютера:

    • Пространство ввода-вывода -
      используется для обращения к регистрам адаптера при инициализации, текущем управлении, опросе состояния, передаче данных.
    • Запрос прерывания -
      это одна линия (IRQ 3, 5, 7, 9, 10, 11, 12 или 15), активизируемая по приему кадра, адресованного данному узлу, а также по окончании передачи кадра. Прерывания - самый дефицитный ресурс ПК, из-за него часто возникают конфликты. Без прерываний сетевые карты работать не могут, при некорректном назначении обращения к сети - "зависают". Используемый номер прерывания должен быть с помощью CMOS Setup компьютера закреплен за шиной, на которой установлен адаптер.
    • Канал прямого доступа к памяти (DMA) -
      используется в некоторых старых картах ISA/EISA.
    • Разделяемая память адаптера (adapter RAM) -
      буфер для передаваемых и принимаемых кадров. Для карт ISA обычно приписывается к области верхней памяти (UMA). Карты PCI могут располагаться в любом месте адресного пространства, не занятого оперативной памятью компьютера. Разделяемую память используют не все модели карт.
    • Постоянная память адаптера (adapter ROM) -
      область адресов для модулей расширения ROM BIOS. Используется для установки ПЗУ удаленной загрузки и антивирусной защиты.

    Конфигурирование
    Конфигурирование адаптера - настройка на использование системных ресурсов компьютера и выбор среды передачи. Способы конфигурирования зависят от модели карты:

    • с помощью переключателей (джамперов), установленных на карте. Используется на адаптерах первых поколений шины ISA;
    • Если сетевой адаптер не поддерживает стандарт Plug&Play, то, перед тем как вставить сетевой адаптер в материнскую плату компьютера, необходимо с помощью переключателей, расположенных на плате адаптера задать правильные значения для портов ввода/вывода, канала прерывания, базовый адрес ПЗУ дистанционной загрузки бездисковой станции.
    • с помощью специальных утилит - для карт на шинах ISA, EISA, MCA;
    • автоматическое конфигурирование - P&P для шин ISA и PCI. Распределение ресурсов осуществляется на этапе загрузки ОС.

    [ http://sharovt.narod.ru/l09.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > network interface card

  • 5 drive

    1. теснить
    2. режим (в коллекторе нефти)
    3. проходить горизонтальную выработку
    4. приводить в движение
    5. привод контактного аппарата
    6. привод компрессора
    7. привод
    8. передача
    9. передаточный механизм
    10. команда переноса файлов на другой дисковод
    11. дисковод
    12. вытеснение нефти (газом, водой)
    13. вытеснение (нефти из коллектора)
    14. возбуждение
    15. возбуждать

     

    возбуждать

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    возбуждение
    индукция

    Создание вихревых токов.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    возбуждение
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    • виды (методы) и технология неразр. контроля

    Синонимы

    EN

     

    вытеснение нефти (газом, водой)
    пластовый режим


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    дисковод

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    дисковод
    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    EN

     

    команда переноса файлов на другой дисковод

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    передаточный механизм
    передача

    Механизм для воспроизведения заданной функциональной зависимости между перемещениями звеньев, образующих кинематические пары со стойкой.
    [Сборник рекомендуемых терминов. Выпуск 99. Теория механизмов и машин. Академия наук СССР. Комитет научно-технической терминологии. 1984 г.]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    DE

     

    передача

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    привод
    Устройство для приведения в действие машин и механизмов.
    Примечание
    Привод состоит из источника энергии, механизма для передачи энергии (движения) и аппаратуры управления. Источником энергии служит двигатель (тепловой, электрический, пневматический, гидравлический и др.) или устройство, отдающее заранее накопленную механическую энергию (пружинный, инерционный, гиревой механизм и др.). В некоторых случаях привод осуществляется за счет мускульной силы. По характеру распределения энергии различают групповой, индивидуальный и многодвигательный привод. По назначению привод машин разделяют на стационарный, т.е. установленный неподвижно на раме или фундаменте; передвижной, используемый на движущихся рабочих машинах; транспортный, применяемый для различных транспортных средств. В производстве применяются также гидропривод машин и пневмопривод.
    [РД 01.120.00-КТН-228-06]

    привод

    Устройство для приведения в действие машин, состоящее из двигателя, механизма передачи и системы управления
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

     

    привод компрессора
    привод

    Двигатель компрессора и устройства для передачи подводимой энергии компрессору.
    Примечание
    В струйном компрессоре - генератор струи с большей удельной энергией.
    [ ГОСТ 28567-90]

    Тематики

    Синонимы

    EN

    DE

     

    привод контактного аппарата
    Устройство, предназначенное для создания или передачи силы, воздействующей на подвижные части контактного аппарата для выполнения функции этого аппарата.
    [ ГОСТ 17703-72]

    привод
    Устройство, предназначенное для создания и передачи силы, воздействующей на подвижные части выключателя для выполнения его функций, а также для удержания выключателя в конечном положении.
    [ ГОСТ Р 52565-2006]

    Приводы являются аппаратами для включения и удержания во включенном положении, а также отключения коммутационных аппаратов (масляного выключателя, выключателя нагрузки или разъединителя).
    С помощью приводов осуществляется ручное, автоматическое и дистанционное управление коммутационными аппаратами.

    По роду используемой энергии приводы разделяются

    • на ручные,
    • пружинные,
    • электромагнитные,
    • электродвигательные,
    • пневматические.

    По роду действия приводы бывают

    В приводах прямого действия движение включающего устройства передается непосредственно на приводной механизм выключателя в момент подачи импульса от источника энергии. Такие приводы потребляют большое количество энергии.
    В приводах косвенного действия энергия, необходимая для включения, предварительно запасается в специальных устройствах: маховиках, пружинах, грузах и т. д.
    [Цигельман И. Е. Электроснабжение гражданских зданий и коммунальных предприятий: Учеб. для электромеханич. спец. техникумов. - М.: Высш. шк. 1988.]


    Приводы служат для включения, удержания во включенном положении и отключения разъединителей и выключателей.
    Основные требования, предъявляемые к приводу выключателя, состоят в том, что каждый привод должен развивать мощность, достаточную для включения выключателя при самых тяжелых условиях работы (включение на короткое замыкание, пониженное напряжение питания), и быть быстродействующим, т. е. производить включение за весьма малый промежуток времени. При медленном включении на существующее в сети КЗ возможно приваривание контактов.
    При включении выключателя совершается большая работа по преодолению сопротивления отключающих пружин, сопротивления упругих частей контактов, трения в механизме, сопротивления масла движению подвижных частей выключателя, электродинамических сил, препятствующих включению, и др.
    При отключении привод выключателя совершает небольшую работу, необходимую только для освобождения запорного механизма, так как отключение выключателя происходит под действием его отключающих пружин.
    В зависимости от рода энергии, используемой для включения, приводы разделяются на ручные, грузовые, пружинно-грузовые, пружинные, электромагнитные, пневматические и гидравлические.

    К наиболее простым относятся ручные приводы, не требующие специального источника электроэнергии для подготовки операции включения. Однако эти приводы имеют ряд существенных недостатков: не позволяют осуществлять дистанционное включение, не могут быть применены в схемах АВР (автоматического включения резерва) и АПВ (автоматического повторного включения), требуют приложения значительной мускульной силы оператора и не позволяют получить высокие скорости подвижных контактов выключателя, необходимые при больших токах КЗ.
    Более совершенными, имеющими большие возможности, но в то же время и более сложными являются грузовые и пружинные приводы, которые обеспечивают значительно более высокие скорости включения выключателя по сравнению с ручными. Это в свою очередь позволяет увеличить включающую способность выключателя. Грузовые и пружинные приводы включают выключатель за счет заранее накопленной энергии поднятого груза или заведенной пружины. Накопление достаточного количества энергии может производиться в течение сравнительно большого промежутка времени (десятки секунд), поэтому мощность электродвигателей таких приводов может быть небольшой (0,1—0.3 кВт).

    Электромагнитные приводы включают выключатель за счет энергии включающего электромагнита. Электромагнитные приводы предназначены для работы на постоянном токе. Питание их осуществляют от аккумуляторных батарей или выпрямителей. По способу питания энергией приводы подразделяют на две группы: прямого и косвенного действия.

    У приводов прямого действия энергия, расходуемая на включение, сообщается приводу во время процесса включения. К приводам прямого действия относятся ручные с использованием мускульной силы человека и электромагнитные или соленоидные приводы. Работа приводов косвенного действия основана на предварительно запасаемой энергии. К таким приводам относятся грузовые, пружинно-грузовые и пружинные приводы, а также пневматические и гидравлические. Последние два типа приводов не нашли широкого применения для выключателей 6—10 кВ и поэтому нами не рассматриваются.
    Приводы прямого действия по конструкции более просты по сравнению с приводами косвенного действия, и в этом их преимущество. Однако поскольку приводы прямого действия питаются от источника энергии непосредственно во время процесса включения выключателя, то потребляемая ими мощность во много раз больше, чем у приводов косвенного действия. Это — существенный недостаток приводов прямого действия.
    Ко всем приводам выключателей предъявляют требование наличия механизма свободного расцепления, т. е. возможности освобождения выключателя от связи с удерживающим и заводящим механизмами привода при срабатывании отключающего устройства и отключения выключателя под действием своих отключающих пружин. Современные приводы имеют свободное расцепление почти на всем ходу контактов, т. е. практически в любой момент от начала включения может произойти отключение. Это особенно важно при включении на КЗ. В этом случае отключение произойдет в первый же момент возникновения дуги, что предотвратит опасность сильного оплавления и сваривания контактов.

    [http://forca.ru/stati/podstancii/privody-razediniteley-i-maslyanyh-vyklyuchateley-6-10-kv-i-ih-remont.html]

    Тематики

    • выключатель, переключатель
    • высоковольтный аппарат, оборудование...

    Классификация

    >>>

    Синонимы

    EN

    Смотри также

     

    приводить в движение

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    38. Привод компрессора

    Привод

    D. Antriebsmaschine

    E. Drive

    Двигатель компрессора и устройства для передачи подводимой энергии компрессору.

    Примечание. В струйном компрессоре - генератор струи с большей удельной энергией

    Источник: ГОСТ 28567-90: Компрессоры. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > drive

  • 6 drive mechanism

    1. привод контактного аппарата

     

    привод контактного аппарата
    Устройство, предназначенное для создания или передачи силы, воздействующей на подвижные части контактного аппарата для выполнения функции этого аппарата.
    [ ГОСТ 17703-72]

    привод
    Устройство, предназначенное для создания и передачи силы, воздействующей на подвижные части выключателя для выполнения его функций, а также для удержания выключателя в конечном положении.
    [ ГОСТ Р 52565-2006]

    Приводы являются аппаратами для включения и удержания во включенном положении, а также отключения коммутационных аппаратов (масляного выключателя, выключателя нагрузки или разъединителя).
    С помощью приводов осуществляется ручное, автоматическое и дистанционное управление коммутационными аппаратами.

    По роду используемой энергии приводы разделяются

    • на ручные,
    • пружинные,
    • электромагнитные,
    • электродвигательные,
    • пневматические.

    По роду действия приводы бывают

    В приводах прямого действия движение включающего устройства передается непосредственно на приводной механизм выключателя в момент подачи импульса от источника энергии. Такие приводы потребляют большое количество энергии.
    В приводах косвенного действия энергия, необходимая для включения, предварительно запасается в специальных устройствах: маховиках, пружинах, грузах и т. д.
    [Цигельман И. Е. Электроснабжение гражданских зданий и коммунальных предприятий: Учеб. для электромеханич. спец. техникумов. - М.: Высш. шк. 1988.]


    Приводы служат для включения, удержания во включенном положении и отключения разъединителей и выключателей.
    Основные требования, предъявляемые к приводу выключателя, состоят в том, что каждый привод должен развивать мощность, достаточную для включения выключателя при самых тяжелых условиях работы (включение на короткое замыкание, пониженное напряжение питания), и быть быстродействующим, т. е. производить включение за весьма малый промежуток времени. При медленном включении на существующее в сети КЗ возможно приваривание контактов.
    При включении выключателя совершается большая работа по преодолению сопротивления отключающих пружин, сопротивления упругих частей контактов, трения в механизме, сопротивления масла движению подвижных частей выключателя, электродинамических сил, препятствующих включению, и др.
    При отключении привод выключателя совершает небольшую работу, необходимую только для освобождения запорного механизма, так как отключение выключателя происходит под действием его отключающих пружин.
    В зависимости от рода энергии, используемой для включения, приводы разделяются на ручные, грузовые, пружинно-грузовые, пружинные, электромагнитные, пневматические и гидравлические.

    К наиболее простым относятся ручные приводы, не требующие специального источника электроэнергии для подготовки операции включения. Однако эти приводы имеют ряд существенных недостатков: не позволяют осуществлять дистанционное включение, не могут быть применены в схемах АВР (автоматического включения резерва) и АПВ (автоматического повторного включения), требуют приложения значительной мускульной силы оператора и не позволяют получить высокие скорости подвижных контактов выключателя, необходимые при больших токах КЗ.
    Более совершенными, имеющими большие возможности, но в то же время и более сложными являются грузовые и пружинные приводы, которые обеспечивают значительно более высокие скорости включения выключателя по сравнению с ручными. Это в свою очередь позволяет увеличить включающую способность выключателя. Грузовые и пружинные приводы включают выключатель за счет заранее накопленной энергии поднятого груза или заведенной пружины. Накопление достаточного количества энергии может производиться в течение сравнительно большого промежутка времени (десятки секунд), поэтому мощность электродвигателей таких приводов может быть небольшой (0,1—0.3 кВт).

    Электромагнитные приводы включают выключатель за счет энергии включающего электромагнита. Электромагнитные приводы предназначены для работы на постоянном токе. Питание их осуществляют от аккумуляторных батарей или выпрямителей. По способу питания энергией приводы подразделяют на две группы: прямого и косвенного действия.

    У приводов прямого действия энергия, расходуемая на включение, сообщается приводу во время процесса включения. К приводам прямого действия относятся ручные с использованием мускульной силы человека и электромагнитные или соленоидные приводы. Работа приводов косвенного действия основана на предварительно запасаемой энергии. К таким приводам относятся грузовые, пружинно-грузовые и пружинные приводы, а также пневматические и гидравлические. Последние два типа приводов не нашли широкого применения для выключателей 6—10 кВ и поэтому нами не рассматриваются.
    Приводы прямого действия по конструкции более просты по сравнению с приводами косвенного действия, и в этом их преимущество. Однако поскольку приводы прямого действия питаются от источника энергии непосредственно во время процесса включения выключателя, то потребляемая ими мощность во много раз больше, чем у приводов косвенного действия. Это — существенный недостаток приводов прямого действия.
    Ко всем приводам выключателей предъявляют требование наличия механизма свободного расцепления, т. е. возможности освобождения выключателя от связи с удерживающим и заводящим механизмами привода при срабатывании отключающего устройства и отключения выключателя под действием своих отключающих пружин. Современные приводы имеют свободное расцепление почти на всем ходу контактов, т. е. практически в любой момент от начала включения может произойти отключение. Это особенно важно при включении на КЗ. В этом случае отключение произойдет в первый же момент возникновения дуги, что предотвратит опасность сильного оплавления и сваривания контактов.

    [http://forca.ru/stati/podstancii/privody-razediniteley-i-maslyanyh-vyklyuchateley-6-10-kv-i-ih-remont.html]

    Тематики

    • выключатель, переключатель
    • высоковольтный аппарат, оборудование...

    Классификация

    >>>

    Синонимы

    EN

    Смотри также

    Англо-русский словарь нормативно-технической терминологии > drive mechanism

  • 7 small-scale business enterprises

    1. малый и средний бизнес

     

    малый и средний бизнес
    В РФ к малому бизнесу принято относить предприятия с ограниченной численностью работающих: в промышленности и строительстве – до 100 чел.; в научно технических и сельхозпредприятиях – до 60 чел.; для организаций оптовой торговли – не более 50 человек; розничной торговли – до 30 чел. В разных странах соответствующие показатели различны: например, в Европе предел для малой фирмы – 300 работников, а в США – даже 500. Размеры предприятий среднего бизнеса — не определены столь же точно. Скорее, говоря о них, применяют метод исключения: это фабрики, заводы и т.п., как правило, не входящие в крупные («олигархические») объединения и государственные корпорации. В России к категории малых предприятий (малого бизнеса) относят также микропредприятия (микробизнес, которым занимаются индивидуальные предприниматели, имеющие и не имеющие статус юридического лица). Значение малого и среднего бизнеса велико, в этом смысле их следует рассматривать совместно. Известно, что современный крупный бизнес не столько создает новые рабочие места,сколько сокращает их путем автоматизации и компьютеризации производства, оптимизации управления. Малые и средние фирмы, напротив, способны создавать миллионы новых рабочих мест. Это критически важно для страны, где безработица, особенно в некоторых регионах, остается серьезной проблемой. К тому же малые и средние предприятия обычно ориентированы на удовлетворение массового спроса на товары широкого потребления, а значит, именно они способны помочь решению проблемы инфляции, инфляционной неустойчивости российской экономики. Это понимают все. Принимаются многочисленные законы, постановления и программы по вопросу о «поддержке малого предпринимательства». Но доля трудоспособного населения, занятого в малом бизнесе, и без того незначительная по сравнению с развитыми европейскими странами, последние годы не растет, а даже сокращается. В том, что так происходит, нет ничего удивительного. Прежде всего, малое предприятие беззащитно перед бюрократическим произволом на всех этапах своего существования, начиная от регистрации и заканчивая уплатой налогов. Создается впечатление, что цель местных и региональных властей сегодня не столько поддержка предпринимателей, сколько создание условий для поборов со стороны разного рода бюрократических структур. Упомянутые законы и программы имеют одну общую черту: можно назвать ее «федеральный подход» или «взгляд из центра». Между тем, малый бизнес – явление сугубо местное. И пусть власти каждого города, района, хорошо знающие потребности и возможности населения, формируют свои фонды и другие организации поддержки малого предпринимательства за счет местных налогов (сейчас большая часть их уходит в центр, а оттуда поступают субвенции и субсидии) и решают, какие виды деятельности следует поддержать. А развитие малого бизнеса должно стать одним из главных критериев оценки их собственной деятельности. Представляется, что в таком подходе - решение проблем малого бизнеса в стране.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > small-scale business enterprises

  • 8 digital video recorder

    1. цифровая видеозапись
    2. видеорегистратор

     

    видеорегистратор
    Устройство, предназначенное для записи, воспроизведения и хранения видеоинформации в составе СОТ.
    [ ГОСТ Р 51558-2008]

    видеорегистратор

    Устройство, предназначенное для видеорегистрации изображений от телевизионных камер.
    В настоящее время используются два основных типа видеорегистраторов:
    (1) аналоговые кассетные (VCR - Video Cassette Recorder) или ленточные (VTR - Video Tape Recorder), в которых видеоинформация регистрируется на магнитную ленту, помещенную в кассету;
    (2)-цифровые (DVR - Digital Video Recorder), в которых видеоинформация регистрируется на жесткий диск (Hard Disk).
    Существуют видеорегистраторы, построенные на базе компьютера (PC-base) и узкоспециализированные автономные видеорегистраторы (STAND ALONE DVR). В свою очередь, аналоговые кассетные (ленточные) видеорегистраторы делятся следующим образом:
    (А) аналоговые кассетные регистраторы реального времени (осуществляющие запись с частотой реального времени, до 168 часов на одну кассету);
    (Б) видеорегистраторы со сжатием времени (Time-Lapse VCR) осуществляющие покадровую запись с увеличенным интервалом времени.
    Аналоговые регистраторы уступают по многим показателям цифровым: меньшее разрешение, более сложная архивация и поиск, невозможность системного мгновенного одновременного on-line воспроизведения и записи информации. Последнее особенно важно для интегрированных систем безопасности. Цифровые регистраторы используют современные алгоритмы сжатия видеосигналов JPEG, MPEG, Wavelet.
    [ http://datasheet.do.am/forum/22-4-1]

    видеорегистратор

    Устройство для обработки и хранения видеоинформации, получаемой с телевизионных камер. Характеризуется количеством каналов для подключения телевизионных камер, разрешением записи и количеством кадров записи в секунду.
    [ http://www.spezvideo.ru/glossary/]

    видеорегистратор
    Устройство для обработки видео или аудио сигнала переданного с камеры видеонаблюдения. Предназначен для просмотра, хранения, записии т.д., поступившего изображения или звука.
    Видеорегистратор является важнейшим устройством системы видеонаблюдения. В настоящее время распространены 2 типа устройств DVR:
    Stand-Alone DVR — представляют из себя полностью автономные устройства. Эти видеорегистраторы высоко надежны, достаточно легко настраиваются и управляются с помощью пульта или мыши.
    Видеорегистраторы PC-based собираются на основе компьютера. Т. к. представляют из себя, плату видео захвата и обработка поступившего сигнала с видеокамеры, полностью ложится на ПК.
    Видеорегистраторы можно разделить на:
    бюджетные — не дорогие DVR со скоростью записи видеосигнала порядка 3-8 кадров в секунду и разрешением 640*272 и 320*272 ( это означает количество пикселей по горизонтали и вертикали)
    профессиональные видеорегистраторы — имеют более высокое разрешение 720*576, запись в реальном времени 25 к/сек (при высоком разрешении) и другие функции, соответственно стоят на порядок дороже.
    Хранение и запись информации ведется на жесткие диски. Обьем хранимой информации зависит от обьема самого диска, что следует учесть при выборе видеорегистратора ( имеется ввиду,что DVR должен поддерживать жесткие диски большого обьема). Предпочтительнее выбирать модели с жесткими дисками SATA, так как жесткие диски этого типа намного быстрее дисков типа IDE
    Видеорегистраторы бывают на 1-4-8-16 каналов. Есть модели промежуточного ряда 9-12-24-32 канала, однако на данный момент они не получили широкого распростронения.
    [ http://cctvblog.ru/videoregistrator/]

    5.2.4 Видеорегистраторы в составе СОТ должны обеспечивать (в зависимости от режимов работы):

    - непрерывную запись в реальном времени;
    - покадровую запись;
    - запись по сигналам срабатывания извещателей охранной сигнализации;
    - запись по командам управления оператора;
    - запись по сигналам видеодетектора.

    В цифровых видеорегистраторах должна обеспечиваться "предтревожная запись" - функция, обеспечивающая просмотр фрагмента видеозаписи до момента времени регистрации события.

    При необходимости видеорегистраторы должны обеспечивать возможность записи звукового сигнала вместе с изображением.

    Видеорегистраторы при записи должны фиксировать дополнительную информацию: номер видеокамеры (видеоканала), время записи, а также (при необходимости) другую информацию.

    При просмотре видеоинформации видеорегистраторы должны обеспечивать поиск видеоданных по времени записи, номеру видеокамеры (видеоканала), просмотр в ускоренном и замедленном режимах, просмотр отдельных кадров.

    [ ГОСТ Р 51558-2008]

    Тематики

    EN

     

    цифровая видеозапись

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > digital video recorder

  • 9 DVR

    1. цифровая видеозапись
    2. видеорегистратор

     

    видеорегистратор
    Устройство, предназначенное для записи, воспроизведения и хранения видеоинформации в составе СОТ.
    [ ГОСТ Р 51558-2008]

    видеорегистратор

    Устройство, предназначенное для видеорегистрации изображений от телевизионных камер.
    В настоящее время используются два основных типа видеорегистраторов:
    (1) аналоговые кассетные (VCR - Video Cassette Recorder) или ленточные (VTR - Video Tape Recorder), в которых видеоинформация регистрируется на магнитную ленту, помещенную в кассету;
    (2)-цифровые (DVR - Digital Video Recorder), в которых видеоинформация регистрируется на жесткий диск (Hard Disk).
    Существуют видеорегистраторы, построенные на базе компьютера (PC-base) и узкоспециализированные автономные видеорегистраторы (STAND ALONE DVR). В свою очередь, аналоговые кассетные (ленточные) видеорегистраторы делятся следующим образом:
    (А) аналоговые кассетные регистраторы реального времени (осуществляющие запись с частотой реального времени, до 168 часов на одну кассету);
    (Б) видеорегистраторы со сжатием времени (Time-Lapse VCR) осуществляющие покадровую запись с увеличенным интервалом времени.
    Аналоговые регистраторы уступают по многим показателям цифровым: меньшее разрешение, более сложная архивация и поиск, невозможность системного мгновенного одновременного on-line воспроизведения и записи информации. Последнее особенно важно для интегрированных систем безопасности. Цифровые регистраторы используют современные алгоритмы сжатия видеосигналов JPEG, MPEG, Wavelet.
    [ http://datasheet.do.am/forum/22-4-1]

    видеорегистратор

    Устройство для обработки и хранения видеоинформации, получаемой с телевизионных камер. Характеризуется количеством каналов для подключения телевизионных камер, разрешением записи и количеством кадров записи в секунду.
    [ http://www.spezvideo.ru/glossary/]

    видеорегистратор
    Устройство для обработки видео или аудио сигнала переданного с камеры видеонаблюдения. Предназначен для просмотра, хранения, записии т.д., поступившего изображения или звука.
    Видеорегистратор является важнейшим устройством системы видеонаблюдения. В настоящее время распространены 2 типа устройств DVR:
    Stand-Alone DVR — представляют из себя полностью автономные устройства. Эти видеорегистраторы высоко надежны, достаточно легко настраиваются и управляются с помощью пульта или мыши.
    Видеорегистраторы PC-based собираются на основе компьютера. Т. к. представляют из себя, плату видео захвата и обработка поступившего сигнала с видеокамеры, полностью ложится на ПК.
    Видеорегистраторы можно разделить на:
    бюджетные — не дорогие DVR со скоростью записи видеосигнала порядка 3-8 кадров в секунду и разрешением 640*272 и 320*272 ( это означает количество пикселей по горизонтали и вертикали)
    профессиональные видеорегистраторы — имеют более высокое разрешение 720*576, запись в реальном времени 25 к/сек (при высоком разрешении) и другие функции, соответственно стоят на порядок дороже.
    Хранение и запись информации ведется на жесткие диски. Обьем хранимой информации зависит от обьема самого диска, что следует учесть при выборе видеорегистратора ( имеется ввиду,что DVR должен поддерживать жесткие диски большого обьема). Предпочтительнее выбирать модели с жесткими дисками SATA, так как жесткие диски этого типа намного быстрее дисков типа IDE
    Видеорегистраторы бывают на 1-4-8-16 каналов. Есть модели промежуточного ряда 9-12-24-32 канала, однако на данный момент они не получили широкого распростронения.
    [ http://cctvblog.ru/videoregistrator/]

    5.2.4 Видеорегистраторы в составе СОТ должны обеспечивать (в зависимости от режимов работы):

    - непрерывную запись в реальном времени;
    - покадровую запись;
    - запись по сигналам срабатывания извещателей охранной сигнализации;
    - запись по командам управления оператора;
    - запись по сигналам видеодетектора.

    В цифровых видеорегистраторах должна обеспечиваться "предтревожная запись" - функция, обеспечивающая просмотр фрагмента видеозаписи до момента времени регистрации события.

    При необходимости видеорегистраторы должны обеспечивать возможность записи звукового сигнала вместе с изображением.

    Видеорегистраторы при записи должны фиксировать дополнительную информацию: номер видеокамеры (видеоканала), время записи, а также (при необходимости) другую информацию.

    При просмотре видеоинформации видеорегистраторы должны обеспечивать поиск видеоданных по времени записи, номеру видеокамеры (видеоканала), просмотр в ускоренном и замедленном режимах, просмотр отдельных кадров.

    [ ГОСТ Р 51558-2008]

    Тематики

    EN

     

    цифровая видеозапись

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DVR

  • 10 progressive scan

    1. прогрессивная развертка

     

    прогрессивная развертка
    В отличие от чересстрочной, технология прогрессивной развертки позволяет производить полную построчную развертку изображения каждую шестнадцатую долю секунды. Другими словами, отснятое изображение не разбивается на отдельные поля, как при чересстрочной развертке.
    Компьютерным мониторам не требуется чередовать кадры для воспроизведения изображения, вместо этого происходит их последовательный построчный показ в правильном порядке, т. е. 1, 2, 3, 4, 5, 6, 7 и т. д., что исключает эффект «мерцания». Это особенно важно в системах охранного видеонаблюдения для воспроизведения деталей движущегося изображения, например изображения бегущего человека. Для оптимального использования преимуществ данной технологии необходим высококачественный монитор.
    [ http://www.alltso.ru/publ/glossarij_setevoe_videonabljudenie_terminy/1-1-0-34]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > progressive scan

  • 11 Глава 3. Почему ругаться вредно

    Это особенно верно, когда имеешь дело с женщиной (217).
    Все знают, что ругаться нехорошо. Особенно публично. Тем более - матом!
    Это известно даже тем, кто выражается нецензурно через слово и иначе разговаривать просто не умеет.
    Но почему нельзя? Что уж такого страшного может быть в словах и угрозах, которые (все это знают!) к реальным действиям обычно ни малейшего отношения не имеют?
    Тем не менее для большинства мат неприемлем, а его употребление шокирует. Корни этих запретов и страхов глубинны. Сидят они в нашем подсознании, и строгого, логичного объяснения им нет (как раз тот случай, когда выразить чувства словами нельзя). В определенной степени это аналог инстинкта самосохранения, детских и животных бессознательных боязней. Они не беспочвенны, закреплены генетически и в итоге способствуют выживанию.
    Не всегда, но связь прослеживается: грехом объявляется то, что людям действительно вредно, но до понимания чего большинство еще не доросло. Грязь пагубна для здоровья - и вводятся обязательные омовения и крещения. Свинина на жаре быстро портится - и мусульманам ее вообще запрещают ит.д. Да нарушение любой из десяти заповедей просто мешает выживанию вида.
    Всегда, во всех обществах действовала система жестких ограничений и табу, в том числе и в отношении слов.
    Особенно велика роль запретов в жизни примитивных племен. Некоторые из них сохранились, и сегодня их можно наблюдать воочию.
    Многочисленные табу первобытных людей, кажущиеся нам дикими, по своей природе и истокам ничем не отличаются от системы наших нынешних ограничений. Да, на ранних стадиях развития общества запретов было гораздо больше. Да, каралось их нарушение гораздо жестче.
    Смерть дикаря, нарушившего табу (не важно, случайно или намеренно), - обычное дело. Причем провинившегося не обязательно убивают, он может и сам умереть со страха, просто от осознания тяжести своего проступка!
    В целом же система запретов обусловлена биопсихологически, и с развитием общества она лишь трансформируется, но не исчезает. Страшные, недопустимые слова были всегда и везде. Так, в Таиланде за упоминание вслух имен умерших родственников могли и казнить. В Греции и Риме нельзя было произносить имена некоторых богов, как и у древних евреев - имени единого Бога. А уж запрет на произнесение названий интимных мест организма и связанных с ними действий существовал и существует практически повсеместно.
    Таким способом человек сознательно и бессознательно оберегает то, что для него свято, а в ряде случаев неосознанно стремится отрицать некоторые биологические аспекты своей природы. На разных стадиях развития (вспомним фрейдовские оральную, анальную и генитальную) главным, сокровенным, определяющим восприятие мира для индивида является и освоение горшка, и познание полового партнера, и, простите за такой ряд, общение с Господом. И все это частично попадает в область интимного и запретного.
    Восприятие обсценных (То есть ненормативных, нецензурных.) слов происходит отчасти на уровне логики, отчасти - на подсознательном уровне. Эти слова оказывают галлюциногенное воздействие, завораживают, вспыхивают в мозгу, немедленно вызывая определенный образ. Психологи, изучающие роль табуированной лексики, всерьез говорят о ее "магическом воздействии" на человека. Причем магия пропорциональна степени запретности слов.
    Для нас сейчас важно, что запрет на произнесение ряда сакральных слов имеет биологические и психологические истоки. Он достался нам в наследство от детской беспомощности, диких предков и первобытных табу - это их отголоски, это оттуда. Так что боязнь мата - в определенной степени болезнь роста или атавизм! Но атавизм хороший, полезный и симпатичный, как, к примеру, волосы на голове.
    Кстати, по личному опыту авторов, чем меньше их остается на макушке - тем свободнее ты в выражениях. Ждем от читателей подтверждения или опровержения этого тезиса.
    Существенно, что как бы система ограничений ни менялась и чем бы ни была обусловлена, она всегда в определенном виде сохраняется. Она нужна, необходима человечеству для правильного функционирования и развития. Это один из законов нашего существования. И его нарушение, переход к "беспределу", снятие всех ограничений в любой сфере отношений всегда ведет к деградации общества в целом. Эксперименты такие история ставила неоднократно.
    Один из них - поругание веры в России в 20-е годы. Над церковью не просто издевались, все связанное с ней, от храмов до икон, уничтожали физически. Тогда русский народ своими руками разрушил огромный пласт собственной культуры. Активисты посмеивались: "Если ваш Бог есть, то что же он нас не накажет?" То, что кара наступила и мы отброшены в историческом развитии лет на сто, осознаем только сейчас.
    Это, кстати, всеобщая закономерность, относящаяся и к технике, и к экологии, и ко всему остальному. "Грехом", расплата за который когда-то последует, являются и превышение допустимой скорости, и нарушение норм техники безопасности, и резкое вмешательство в дела природы (помните, как в Китае перебили всех воробьев или в Австралию завезли кроликов?) Последствия известны. Есть в истории и примеры, когда полная либерализация в области половых отношений приводила к деградации целых народов - мы, к сожалению, это и сейчас наблюдаем в Африке.
    Итак, ограничения необходимы и полезны. Каждое общество их имеет и соблюдает. Американское - вовсе не исключение. Скорее наоборот, порядки и правила соблюдаются там строже, чем в большинстве других стран. Расхожее представление о том, что Америка - страна вседозволенности, сильно преувеличено. Что касается употребления неформальной лексики - в целом там пока все пристойнее, чем у нас. На работе матом не ругаются. В авангарде у них есть все, и выпендриваться, употребляя неформальную лексику, включая изощренную, при желании можно. Но мы берем массовостью и прямотой.
    Вспомнился старый анекдот. Американец входит в купе поезда, где едет русский, и плюет в его сторону. Плевок облетает три раза вокруг головы и вылетает в окно. "Джон Смит, чемпион мира по фигурному плеванию", - представляется довольный американец. В ответ наш плюет ему прямо в лоб и протягивает руку со словами: "Иван, любитель!"
    Вот, кратко, что мы хотели сказать о природе грубой брани и ее животных первобытных корнях. В целом постоянно употреблять грязные слова склонны слои населения, имеющие низкий социальный статус. Для общества это не ориентир, вернее ориентир, обозначающий ту грань, переступать которую не стоит. Не будем таким людям уподобляться, хоть и "вышли мы все из народа".
    Впрочем, абсолютный отказ от ругательств так же плох, как и их постоянное использование. Но об этом - в следующей главе.

    American slang. English-Russian dictionary > Глава 3. Почему ругаться вредно

  • 12 terminal bus

    1. промышленная сеть верхнего уровня

     

    промышленная сеть верхнего уровня
    коммуникационная сеть верхнего уровня
    сеть операторского уровня
    Сеть верхнего уровня АСУ ТП.
    Сеть передачи данных между операторскими станциями, контроллерами и серверами.
    [ http://kazanets.narod.ru/NT_PART2.htm]

    В данной статье речь пойдет о коммуникационных сетях верхнего уровня, входящих в состав АСУ ТП. Их еще называют сетями операторского уровня, ссылаясь на трехуровневую модель распределенных систем управления.

    Сети верхнего уровня служат для передачи данных между контроллерами, серверами и операторскими рабочими станциями. Иногда в состав таких сетей входят дополнительные узлы: центральный сервер архива, сервер промышленных приложений, инженерная станция и т.д. Но это уже опции.

    Какие сети используются на верхнем уровне?
    В отличие от стандартов полевых шин, здесь особого разнообразия нет. Фактически, большинство сетей верхнего уровня, применяемых в современных АСУ ТП, базируется на стандарте Ethernet (IEEE 802.3) или на его более быстрых вариантах Fast Ethernet и Gigabit Ethernet. При этом, как правило, используется полный стек коммуникационных протоколов TCP/IP. В этом плане сети операторского уровня очень похожи на обычные ЛВС, применяемые в офисных приложениях. Широкое промышленное применение сетей Ethernet обусловлено следующими очевидными моментами:

    1.    Промышленные сети верхнего уровня объединяют множество операторских станций и серверов, которые в большинстве случаев представляют собой персональные компьютеры. Стандарт Ethernet отлично подходит для организации подобных ЛВС; для этого необходимо снабдить каждый компьютер лишь сетевым адаптером (NIC, network interface card). Коммуникационные модули Ethernet для промышленных контроллеров просты в изготовлении и легки в конфигурировании. Стоит отметить, что многие современные контроллеры уже имеют встроенные интерфейсы для подключения к сетям Ethernet.

    2.   На рынке существует большой выбор недорого коммуникационного оборудования для сетей Ethernet, в том числе специально адаптированного для промышленного применения.

    3.   Сети Ethernet обладают большой скоростью передачи данных. Например, стандарт Gigabit Ethernet позволяет передавать данные со скоростью до 1 Gb в секунду при использовании витой пары категории 5. Как будет понятно дальше, большая пропускная способность сети становится чрезвычайно важным моментом для промышленных приложений.

    4.   Очень частым требованием является возможность состыковки сети АСУ ТП с локальной сетью завода (или предприятия). Как правило, существующая ЛВС завода базируется на стандарте Ethernet. Использование единого сетевого стандарта позволяет упростить интеграцию АСУ ТП в общую сеть предприятия, что становится особенно ощутимым при реализации и развертывании систем верхнего уровня типа MES (Мanufacturing Еxecution System).

    Однако у промышленных сетей верхнего уровня есть своя специфика, обусловленная условиями промышленного применения. Типичными требованиями, предъявляемыми к таким сетям, являются:

    1.    Большая пропускная способность и скорость передачи данных. Объем трафика напрямую зависит от многих факторов: количества архивируемых и визуализируемых технологических параметров, количества серверов и операторских станций, используемых прикладных приложений и т.д.

    В отличие от полевых сетей жесткого требования детерминированности здесь нет: строго говоря, неважно, сколько времени займет передача сообщения от одного узла к другому – 100 мс или 700 мс (естественно, это не важно, пока находится в разумных пределах). Главное, чтобы сеть в целом могла справляться с общим объемом трафика за определенное время. Наиболее интенсивный трафик идет по участкам сети, соединяющим серверы и операторские станции (клиенты). Это связано с тем, что на операторской станции технологическая информация обновляется в среднем раз в секунду, причем передаваемых технологических параметров может быть несколько тысяч. Но и тут нет жестких временных ограничений: оператор не заметит, если информация будет обновляться, скажем, каждые полторы секунды вместо положенной одной. В то же время если контроллер (с циклом сканирования в 100 мс) столкнется с 500-милисекундной задержкой поступления новых данных от датчика, это может привести к некорректной отработке алгоритмов управления.

    2.    Отказоустойчивость. Достигается, как правило, путем резервирования коммуникационного оборудования и линий связи по схеме 2*N так, что в случае выхода из строя коммутатора или обрыва канала, система управления способна в кратчайшие сроки (не более 1-3 с) локализовать место отказа, выполнить автоматическую перестройку топологии и перенаправить трафик на резервные маршруты. Далее мы более подробно остановимся на схемах обеспечения резервирования.

    3.    Соответствие сетевого оборудования промышленным условиям эксплуатации. Под этим подразумеваются такие немаловажные технические меры, как: защита сетевого оборудования от пыли и влаги; расширенный температурный диапазон эксплуатации; увеличенный цикл жизни; возможность удобного монтажа на DIN-рейку; низковольтное питание с возможностью резервирования; прочные и износостойкие разъемы и коннекторы. По функционалу промышленное сетевое оборудование практически не отличается от офисных аналогов, однако, ввиду специального исполнения, стоит несколько дороже.
     

    4916
    Рис. 1. Промышленные коммутаторы SCALANCE X200 производства Siemens (слева) и LM8TX от Phoenix Contact (справа): монтаж на DIN-рейку; питание от 24 VDC (у SCALANCE X200 возможность резервирования питания); поддержка резервированных сетевых топологий.

    Говоря о промышленных сетях, построенных на базе технологии Ethernet, часто используют термин Industrial Ethernet, намекая тем самым на их промышленное предназначение. Сейчас ведутся обширные дискуссии о выделении Industrial Ethernet в отдельный промышленный стандарт, однако на данный момент Industrial Ethernet – это лишь перечень технических рекомендации по организации сетей в производственных условиях, и является, строго говоря, неформализованным дополнением к спецификации физического уровня стандарта Ethernet.

    Есть и другая точка зрения на то, что такое Industrial Ethernet. Дело в том, что в последнее время разработано множество коммуникационных протоколов, базирующихся на стандарте Ethernet и оптимизированных для передачи критичных ко времени данных. Такие протоколы условно называют протоколами реального времени, имея в виду, что с их помощью можно организовать обмен данными между распределенными приложениями, которые критичны ко времени выполнения и требуют четкой временной синхронизации. Конечная цель – добиться относительной детерминированности при передаче данных. В качестве примера Industrial Ethernet можно привести:

    1.    Profinet;
    2.    EtherCAT;
    3.    Ethernet Powerlink;
    4.    Ether/IP.

    Эти протоколы в различной степени модифицируют стандартный стек TCP/IP, добавляя в него новые алгоритмы сетевого обмена, диагностические функции, методы самокорректировки и функции синхронизации, оставляя при этом канальный и физический уровни Ethernet неизменными. Это позволяет использовать новые протоколы передачи данных в существующих сетях Ethernet с использованием стандартного коммуникационного оборудования.

    Теперь рассмотрим конкретные конфигурации сетей операторского уровня.
    На рисунке 2 показана самая простая – базовая конфигурация. Отказ любого коммутатора или обрыв канала связи ( link) ведет к нарушению целостности всей системы. Единичная точка отказа изображена на рисунке красным крестиком.

    4917
    Рис. 2. Нерезервированная конфигурация сети верхнего уровня

    Такая простая конфигурация подходит лишь для систем управления, внедряемых на некритичных участках производства (водоподготовка для каких-нибудь водяных контуров или, например, приемка молока на молочном заводе). Для более ответственных технологических участков такое решение явно неудовлетворительно.

    На рисунке 3 показана отказоустойчивая конфигурация с полным резервированием. Каждый канал связи и сетевой компонент резервируется. Обратите внимание, сколько отказов переносит система прежде, чем теряется коммуникация с одной рабочей станцией оператора. Но даже это не выводит систему из строя, так как остается в действии вторая, страхующая рабочая станция.

    4918
    Рис. 3. Полностью резервированная конфигурация сети верхнего уровня

    Резервирование неизбежно ведет к возникновению петлевидных участков сети – замкнутых маршрутов. Стандарт Ethernet, строго говоря, не допускает петлевидных топологий, так как это может привести к зацикливанию пакетов особенно при широковещательной рассылке. Но и из этой ситуации есть выход. Современные коммутаторы, как правило, поддерживают дополнительный прокол Spanning Tree Protocol (STP, IEEE 802.1d), который позволяет создавать петлевидные маршруты в сетях Ethernet. Постоянно анализируя конфигурацию сети, STP автоматически выстраивает древовидную топологию, переводя избыточные коммуникационные линии в резерв. В случае нарушения целостности построенной таким образом сети (обрыв связи, например), STP в считанные секунды включает в работу необходимые резервные линии, восстанавливая древовидную структуры сети. Примечательно то, что этот протокол не требует первичной настройки и работает автоматически. Есть и более мощная разновидность данного протокола Rapid Spanning Tree Protocol (RSTP, IEEE 802.1w), позволяющая снизить время перестройки сети вплоть до нескольких миллисекунд. Протоколы STP и RSTP позволяют создавать произвольное количество избыточных линий связи и являются обязательным функционалом для промышленных коммутаторов, применяемых в резервированных сетях.

    На рисунке 4 изображена резервированная конфигурация сети верхнего уровня, содержащая оптоволоконное кольцо для организации связи между контроллерами и серверами. Иногда это кольцо дублируется, что придает системе дополнительную отказоустойчивость.

    4919
    Рис. 4. Резервированная конфигурация сети на основе оптоволоконного кольца

    Мы рассмотрели наиболее типичные схемы построения сетей, применяемых в промышленности. Вместе с тем следует заметить, что универсальных конфигураций сетей попросту не существует: в каждом конкретном случае проектировщик вырабатывает подходящее техническое решение исходя из поставленной задачи и условий применения.

    [ http://kazanets.narod.ru/NT_PART2.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > terminal bus

  • 13 Предисловие

     Слова - это строительный материал для христианской теологии. На протяжении многих столетий христианская теологическая мысль выражала себя в словах. Создавался определенный запас слов. Происходили разные события, и возникали новые слова для их описания. Христианская церковь совершала богослужения, занималась образованием и проповедовала. Формировалась традиция веры. Одни идеологические движения зарождались, набирали силу, другие - отмирали. Церковные организации действовали в истории. Христиане стремились к духовному росту, и руководство в этом осуществлялось священнослужителями. Церковь изучала и толковала Священное Писание и видоизменяла этические взгляды. Все это и многое другое происходило в жизни церкви, и слова играли решающую роль в этих процессах.
     Многолетнее преподавание в теологических учебных заведениях убедило меня в необходимости создания словаря, в котором давались бы определения важнейших теологических терминов. Ряд специализированных словарей и энциклопедий предлагает углубленные трактовки слов, используемых в частных областях, например в библеистике, в теологии, в церковной истории, в богослужении. Это очень важные источники. И все же издаваемые в настоящее время многочисленные теологические словари являются, как правило, техническими по своей сути. Специализированные словари и не претендуют на то, чтобы быть всеобъемлющими. Таким образом, возникает необходимость в более широкой и синтетической работе, в которой содержались бы сжатые определения слов, используемых практически во всех теологических дисциплинах. Предлагаемый читателю словарь ставит перед собой именно эту задачу.
     "Вестминстерский словарь теологических терминов" состоит из кратких, от одного до трех предложений, определений теологических терминов, используемых в 21 теологической дисциплине. Более 5500 терминов взяты из следующих областей: библеистика, история американской церкви, церковное управление, всеобщая история церкви, этика, евангелизм, феминистская теология, фундаментализм, религия, либеральная теология, литургическая теология, лютеранская теология, пастырство, философская теология, реформатская теология, римско-католическая теология, соционаучные термины, духовность, теология, уэслианская теология, богослужение. Этот словарь не претендует на "глубину" и не предполагает погружение в тонкости теологических дискуссий, он скорее предлагает "широту" охвата и стремится обозначить общее направление движения к той или иной области знания. Я надеюсь, что словарь такого типа заполнит важную нишу в теологической литературе, поскольку он обеспечивает легкий доступ к весьма широкому кругу теологических терминов.
     Обзор вышеозначенных областей указывает, что я трактую словосочетание "теологические термины" предельно широко. Даже их перечисление выводит нас за рамки традиционного формального описания теологии в терминах субдисциплин, таких, как библейская, конструктивная, догматическая, фундаментальная, историческая и систематическая теологии. Вместо традиционного подхода я задаюсь вопросами: "Какие термины используются в той или иной теологической области?", "Насколько они важны?", а самое главное: "Каково их теологическое значение?" Большинство терминов из областей церковной истории, библеистики, философских движений, социальной жизни, богослужения являются примерами типов терминов, вошедших в словарь, но выходящих за традиционные теологические рамки. Я надеюсь, что этот словарь окажет помощь читателям, имеющим дело с широким кругом теологических источников и встречающим там незнакомую терминологию.
     Я не включил в словарь статьи-персоналии и, за редким исключением, статьи, посвященные названиям отдельных книг. Для этого необходимо создание отдельных новых словарей. Главное внимание было уделено тому, что означает тот или иной термин в христианской теологической традиции. В ряде случаев значения терминов не связаны непосредственно с этой традицией или их связь прослеживается в самом общем виде. Некоторые термины, посвященные религии в целом или философской теологии, не имеют вообще отношения к христианской теологии. И все же, поскольку они получили достаточно широкое распространение в теологической литературе, я счел возможным включить их в словарь, хотя и не ставил своей задачей создание религиоведческого словаря. Термины определяются в соответствии с тем, что ими обозначается, но я старался избегать определений, звучащих уничижительно. Иногда возникала необходимость указать, имеют ли определенные термины или точки зрения широкое распространение в христианской теологии или они используются лишь отдельными религиозными группами и движениями.
     Читателю, возможно, бросится в глаза, что не все способы употребления или определения того или иного термина даны в словаре. Причиной этого в ряде случаев можно считать мою неосведомленность в некоторых областях, в других случаях - сознательное ограничение, в соответствии с которым я посчитал необходимым упоминать только наиболее важные способы употребления терминов. Содержащиеся в словаре этимологии обычно прослеживают латинское, греческое или иудейское происхождение терминов. Часто указание на греческое или иудейское происхождение терминов важно для того, чтобы понять, как они использовались в ветхозаветных и новозаветных текстах.
     Этот словарь не мог бы быть создан без помощи многих людей. Я бы хотел поблагодарить за поддержку и предложения по дополнению первоначального варианта словника, особенно в областях, требующих специальной подготовки, Габриэля Факре (Ньютоновская теологическая семинария в Андовере), Джозефа А. Фавацца (Родез колледж), Джанет Фишбурн (аспирантура Дрю университета), Кристину Э. Гудорф (Флоридский международный университет), Стива Харпера (Фонд теологического образования), Кэтрин Т. Р. Мак-Дональд (Бостонская пресвитерия), Ральфа У. Квире (Варт-бургская теологическая семинария), Петера X. ван Несса (Объединенная теологическая семинария Нью-Йорка) и Джеймса Ф. Уайта (Нотр-Дамский университет). Эти коллеги оказали мне огромную помощь, и я очень признателен им за это. В то же время я лично несу ответственность за окончательный вариант словника и за все определения, содержащиеся в словаре.
     Я также выражаю благодарность Ричу Куку, моему ассистенту в теологической семинарии Мемфиса. Он оказал мне помощь при вычитывании текста словаря и был постоянным собеседником, поддерживающим меня в мечтах о возможности использования мультимедийных средств в теологическом образовании. Карла С. Хаббард тоже помогала мне осуществлять сверку набранного текста и оригинала.
     Этот словарь обязан своим происхождением Дэвису Перкинсу, президенту и издателю Пресвитерианской издательской корпорации. Дэвис обратился ко мне с предложением осуществить такое издание, и я очень обрадовался его предложению. Он твердо и настойчиво поддерживал меня в работе над словарем, особенно тогда, когда другие обязанности отвлекали меня и процесс написания словаря замедлялся. Несмотря на свою настойчивость, если не сказать назойливость, он всегда оставался моим лучшим другом. Он и сотрудники издательства "Вестминстер. Джон Нокс", включая ведущего редактора Стефани Игнатович, заслуживают особой благодарности. Неоценимую помощь оказал технический редактор Карл Хелмих, аккуратность которого иногда граничила с педантичностью.
     Самых больших благодарностей заслуживают члены моей семьи - Линда-Джо, Стефен и Карл. Они разделяли со мной все трудности нашей совместной жизни и с любовью поддерживали меня не только в работе над словарем, но и во всем остальном. Им я выражаю глубочайшую признательность за все радости, которые мы испытали вместе.
     Эта книга посвящается факультету и сотрудникам теологической семинарии Мемфиса, работавшим вместе со мной в 1993-1996 гг. Как декан факультета я хочу выразить им огромную благодарность. Коллеги, которым посвящается эта книга, были замечательными друзьями, поддерживающими меня, и специалистами, глубоко вовлеченными в процесс теологического образования, способствовать которому и должен словарь теологических терминов. Я благодарен им за их доброжелательное отношение ко мне и к моей работе.
     Во время работы над словарем я неожиданно стал получать вдохновение от музыки Мишеля Досе и ансамбля Бьюсолейл. Гаррисон Кейллор назвал Бьюсолейл "лучшим в мире ансамблем, исполняющим гайанскую музыку". До тех пор, пока я не побывал на концерте этого ансамбля, я не интересовался музыкой такого типа. Но, к моему изумлению, она оказалась прекрасным фоном для определения теологических терминов.
     Одним из моих кумиров является Сэмюэл Джонсон (1709-1784), великий английский лексикограф, создатель монументального "Словаря английского языка" ( 1755), которому он посвятил девять лет своей жизни. Его портрет, прикрепленный моей женой, до сих пор висит над моим домашним компьютером. Сейчас его известное определение: "Лексикограф - создатель словарей, не приносящий никому вреда работяга..." - приобрело для меня личностное значение.
     Я надеюсь, что выход в свет этого словаря освободит "работяг-лексикографов" хотя бы от части работы в области теологии. Карл Барт трактовал теологию как "науку, приносящую удовольствие". Воистину так! Словарь теологических терминов адресован всем, кто интересуется христианской теологией. Может быть, они поймут, что слова, с которыми они будут знакомиться, являются "строительным материалом" и, поняв это, начнут испытывать удовольствие от построения из них здания теологии.
     Д. М. К.
     Мемфис, штат Теннесси Весна 1996 г.

    Westminster dictionary of theological terms > Предисловие

  • 14 alarm management

    1. управление аварийными сигналами

     

    управление аварийными сигналами
    -
    [Интент]


    Переход от аналоговых систем к цифровым привел к широкому, иногда бесконтрольному использованию аварийных сигналов. Текущая программа снижения количества нежелательных аварийных сигналов, контроля, определения приоритетности и адекватного реагирования на такие сигналы будет способствовать надежной и эффективной работе предприятия.

    Если технология хороша, то, казалось бы, чем шире она применяется, тем лучше. Разве не так? Как раз нет. Больше не всегда означает лучше. Наступление эпохи микропроцессоров и широкое распространение современных распределенных систем управления (DCS) упростило подачу сигналов тревоги при любом сбое технологического процесса, поскольку затраты на это невелики или равны нулю. В результате в настоящее время на большинстве предприятий имеются системы, подающие ежедневно огромное количество аварийных сигналов и уведомлений, что мешает работе, а иногда приводит к катастрофическим ситуациям.

    „Всем известно, насколько важной является система управления аварийными сигналами. Но, несмотря на это, на производстве такие системы управления внедряются достаточно редко", - отмечает Тодд Стауффер, руководитель отдела маркетинга PCS7 в компании Siemens Energy & Automation. Однако события последних лет, среди которых взрыв на нефтеперегонном заводе BP в Техасе в марте 2005 г., в результате которого погибло 15 и получило травмы 170 человек, могут изменить отношение к данной проблеме. В отчете об этом событии говорится, что аварийные сигналы не всегда были технически обоснованы.

    Широкое распространение компьютеризированного оборудования и распределенных систем управления сделало более простым и быстрым формирование аварийных сигналов. Согласно новым принципам аварийные сигналы следует формировать только тогда, когда необходимы ответные действия оператора. (С разрешения Siemens Energy & Automation)

    Этот и другие подобные инциденты побудили специалистов многих предприятий пересмотреть программы управления аварийными сигналами. Специалисты пытаются найти причины непомерного роста числа аварийных сигналов, изучить и применить передовой опыт и содействовать разработке стандартов. Все это подталкивает многие компании к оценке и внедрению эталонных стандартов, таких, например, как Publication 191 Ассоциации пользователей средств разработки и материалов (EEMUA) „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке", которую многие называют фактическим стандартом систем управления аварийными сигналами. Тим Дональдсон, директор по маркетингу компании Iconics, отмечает: „Распределение и частота/колебания аварийных сигналов, взаимная корреляция, время реакции и изменения в действиях оператора в течение определенного интервала времени являются основными показателями отчетов, которые входят в стандарт EEMUA и обеспечивают полезную информацию для улучшения работы предприятия”. Помимо этого как конечные пользователи, так и поставщики поддерживают развитие таких стандартов, как SP-18.02 ISA «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности». (см. сопроводительный раздел „Стандарты, эталоны, передовой опыт" для получения более подробных сведений).

    Предполагается, что одной из причин взрыва на нефтеперегонном заводе BP в Техасе в 2005 г., в результате которого погибло 15 и получило ранения 170 человек, а также был нанесен значительный ущерб имуществу, стала неэффективная система аварийных сигналов.(Источник: Комиссия по химической безопасности и расследованию аварий США)

    На большинстве предприятий системы аварийной сигнализации очень часто имеют слишком большое количество аварийных сигналов. Это в высшей степени нецелесообразно. Показатели EEMUA являются эталонными. Они содержатся в Publication 191 (1999), „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Начало работы

    Наиболее важным представляется вопрос: почему так велико количество аварийных сигналов? Стауффер объясняет это следующим образом: „В эпоху аналоговых систем аварийные сигналы реализовывались аппаратно. Они должны были соответствующим образом разрабатываться и устанавливаться. Каждый аварийный сигнал имел реальную стоимость - примерно 1000 долл. США. Поэтому они выполнялись тщательно. С развитием современных DCS аварийные сигналы практически ничего не стоят, в связи с чем на предприятиях стремятся устанавливать все возможные сигналы".

    Характеристики «хорошего» аварийного сообщения

    В число базовых требований к аварийному сообщению, включенных в аттестационный документ EEMUA, входит ясное, непротиворечивое представление информации. На каждом экране дисплея:

    • Должно быть четко определено возникшее состояние;

    • Следует использовать терминологию, понятную для оператора;

    • Должна применяться непротиворечивая система сокращений, основанная на стандартном словаре сокращений для данной отрасли производства;

    • Следует использовать согласованную структуру сообщения;

    • Система не должна строиться только на основе теговых обозначений и номеров;

    • Следует проверить удобство работы на реальном производстве.

    Информация из Publication 191 (1999) EEMUA „Системы аварийной сигнализации: Руководство по разработке, управлению и поставке".

    Качественная система управления аварийными сигналами должна опираться на руководящий документ. В стандарте ISA SP-18.02 «Управление системами аварийной сигнализации для обрабатывающих отраслей промышленности», предложен целостный подход, основанный на модели жизненного цикла, которая включает в себя определяющие принципы, обучение, контроль и аудит.

    Именно поэтому операторы сегодня часто сталкиваются с проблемой резкого роста аварийных сигналов. В соответствии с рекомендациями Publication 191 EEMUA средняя частота аварийных сигналов не должна превышать одного сигнала за 10 минут, или не более 144 сигналов в день. В большинстве отраслей промышленности показатели значительно выше и находятся в диапазоне 5-9 сигналов за 10 минут (см. таблицу Эталонные показатели для аварийных сигналов). Дэвид Гэртнер, руководитель служб управления аварийными сигналами в компании Invensys Process Systems, вспоминает, что при запуске производственной установки пяти операторам за полгода поступило 5 миллионов сигналов тревоги. „От одного из устройств было получено 550 000 аварийных сигналов. Устройство работает на протяжении многих месяцев, и до сих пор никто не решился отключить его”.

    Практика прошлых лет заключалась в том, чтобы использовать любые аварийные сигналы независимо от того - нужны они или нет. Однако в последнее время при конфигурировании систем аварийных сигналов исходят из необходимости ответных действий со стороны оператора. Этот принцип, который отражает фундаментальные изменения в разработке систем и взаимодействии операторов, стал основой проекта стандарта SP18 ISA. В этом документе дается следующее определение аварийного сигнала: „звуковой и/или визуальный способ привлечения внимания, указывающий оператору на неисправность оборудования, отклонения в технологическом процессе или аномальные условия эксплуатации, которые требуют реагирования”. При такой практике сигнал конфигурируется только в том случае, когда на него необходим ответ оператора.

    Адекватная реакция

    Особенно важно учитывать следующую рекомендацию: „Не следует ничего предпринимать в отношении событий, для которых нет измерительного инструмента (обычно программного)”.Высказывания Ника Сэнд-за, сопредседателя комитета по разработке стандартов для систем управления аварийными сигналами SP-18.00.02 Общества ISA и менеджера технологий управления процессами химического производства DuPont, подчеркивают необходимость контроля: „Система контроля должна сообщать - в каком состоянии находятся аварийные сигналы. По каким аварийным сигналам проводится техническое обслуживание? Сколько сигналов имеет самый высокий приоритет? Какие из них относятся к системе безопасности? Она также должна сообщать об эффективности работы системы. Соответствует ли ее работа вашим целям и основополагающим принципам?"

    Кейт Джоунз, старший менеджер по системам визуализации в Wonderware, добавляет: „Во многих отраслях промышленности, например в фармацевтике и в пищевой промышленности, уже сегодня требуется ведение баз данных по материалам и ингредиентам. Эта информация может также оказаться полезной при анализе аварийных сигналов. Мы можем установить комплект оборудования, работающего в реальном времени. Оно помогает определить место, где возникла проблема, с которой связан аварийный сигнал. Например, можно создать простые гистограммы частот аварийных сигналов. Можно сформировать отчеты об аварийных сигналах в соответствии с разными уровнями системы контроля, которая предоставляет сведения как для менеджеров, так и для исполнителей”.

    Представитель компании Invensys Гэртнер утверждает, что двумя основными элементами каждой программы управления аварийными сигналами должны быть: „хороший аналитический инструмент, с помощью которого можно определить устройства, подающие наибольшее количество аварийных сигналов, и эффективный технологический процесс, позволяющий объединить усилия персонала и технические средства для устранения неисправностей. Инструментарий помогает выявить источник проблемы. С его помощью можно определить наиболее частые сигналы, а также ложные и отвлекающие сигналы. Таким образом, мы можем выяснить, где и когда возникают аварийные сигналы, можем провести анализ основных причин и выяснить, почему происходит резкое увеличение сигналов, а также установить для них новые приоритеты. На многих предприятиях высокий приоритет установлен для всех аварийных сигналов. Это неприемлемое решение. Наиболее разумным способом распределения приоритетности является следующий: 5 % аварийных сигналов имеют приоритет № 1, 15% приоритет № 2, и 80% приоритет № 3. В этом случае оператор может отреагировать на те сигналы, которые действительно важны”.

    И, тем не менее, Марк МакТэвиш, руководитель группы решений в области управления аварийными сигналами и международных курсов обучения в компании Matrikon, отмечает: „Необходимо помнить, что программное обеспечение - это всего лишь инструмент, оно само по себе не является решением. Аварийные сигналы должны представлять собой исключительные случаи, которые указывают на события, выходящие за приемлемые рамки. Удачные программы управления аварийными сигналами позволяют добиться внедрения на производстве именно такого подхода. Они помогают инженерам изо дня в день управлять своими установками, обеспечивая надежный контроль качества и повышение производительности за счет снижения незапланированных простоев”.

    Система, нацеленная на оператора

    Тем не менее, даже наличия хорошей системы сигнализации и механизма контроля и анализа ее функционирования еще недостаточно. Необходимо следовать основополагающим принципам, руководящему документу, который должен стать фундаментом для всей системы аварийной сигнализации в целом, подчеркивает Сэндз, сопредседатель ISA SP18. При разработке стандарта „основное внимание мы уделяем не только рационализации аварийных сигналов, - говорит он, - но и жизненному циклу систем управления аварийными сигналами в целом, включая обучение, внесение изменений, совершенствование и периодический контроль на производственном участке. Мы стремимся использовать целостный подход к системе управления аварийными сигналами, построенной в соответствии с ISA 84.00.01, Функциональная безопасность: Системы безопасности с измерительной аппаратурой для сектора обрабатывающей промышленности». (см. диаграмму Модель жизненного цикла системы управления аварийными сигналами)”.

    «В данном подходе учитывается участие оператора. Многие недооценивают роль оператора,- отмечает МакТэвиш из Matrikon. - Система управления аварийными сигналами строится вокруг оператора. Инженерам трудно понять проблемы оператора, если они не побывают на его месте и не получат опыт управления аварийными сигналами. Они считают, что знают потребности оператора, но зачастую оказывается, что это не так”.

    Удобное отображение информации с помощью человеко-машинного интерфейса является наиболее существенным аспектом системы управления аварийными сигналами. Джонс из Wonderware говорит: „Аварийные сигналы перед поступлением к оператору должны быть отфильтрованы так, чтобы до оператора дошли нужные сообщения. Программное обеспечение предоставляет инструментарий для удобной конфигурации этих параметров, но также важны согласованность и подтверждение ответных действий”.

    Аварийный сигнал должен сообщать о том, что необходимо сделать. Например, как отмечает Стауффер из Siemens: „Когда специалист по автоматизации настраивает конфигурацию системы, он может задать обозначение для физического устройства в соответствии с системой идентификационных или контурных тегов ISA. При этом обозначение аварийного сигнала может выглядеть как LIC-120. Но оператору информацию представляют в другом виде. Для него это 'регулятор уровня для резервуара XYZ'. Если в сообщении оператору указываются неверные сведения, то могут возникнуть проблемы. Оператор, а не специалист по автоматизации является адресатом. Он - единственный, кто реагирует на сигналы. Сообщение должно быть сразу же абсолютно понятным для него!"

    Эдди Хабиби, основатель и главный исполнительный директор PAS, отмечает: „Эффективность деятельности оператора, которая существенно влияет на надежность и рентабельность предприятия, выходит за рамки совершенствования системы управления аварийными сигналами. Инвестиции в операторов являются такими же важными, как инвестиции в современные системы управления технологическим процессом. Нельзя добиться эффективности работы операторов без учета человеческого фактора. Компетентный оператор хорошо знает технологический процесс, имеет прекрасные навыки общения и обращения с людьми и всегда находится в состоянии готовности в отношении всех событий системы аварийных сигналов”. „До возникновения DCS, -продолжает он, - перед оператором находилась схема технологического процесса, на которой были указаны все трубопроводы и измерительное оборудование. С переходом на управление с помощью ЭВМ сотни схем трубопроводов и контрольно-измерительных приборов были занесены в компьютерные системы. При этом не подумали об интерфейсе оператора. Когда произошел переход от аналоговых систем и физических схем панели управления к цифровым системам с экранными интерфейсами, оператор утратил целостную картину происходящего”.

    «Оператору также требуется иметь необходимое образование в области технологических процессов, - подчеркивает Хабиби. - Мы часто недооцениваем роль обучения. Каковы принципы работы насоса или компрессора? Летчик гражданской авиации проходит бесчисленные часы подготовки. Он должен быть достаточно подготовленным перед тем, как ему разрешат взять на себя ответственность за многие жизни. В руках оператора химического производства возможно лежит не меньшее, если не большее количество жизней, но его подготовка обычно ограничивается двухмесячными курсами, а потом он учится на рабочем месте. Необходимо больше внимания уделять повышению квалификации операторов производства”.

    Рентабельность

    Эффективная система управления аварийными сигналами стоит времени и денег. Однако и неэффективная система также стоит денег и времени, но приводит к снижению производительности и повышению риска для человеческой жизни. Хотя создание новой программы управления аварийными сигналами или пересмотр и реконструкция старой может обескуражить кого угодно, существует масса информации по способам реализации и достижения целей системы управления аварийными сигналами.

    Наиболее важным является именно определение цели и способов ее достижения. МакТэвиш говорит, что система должна выдавать своевременные аварийные сигналы, которые не дублируют друг друга, адекватно отражают ситуацию, помогают оператору диагностировать проблему и определять эффективное направление действий. „Целью является поддержание производства в безопасном, надежном рабочем состоянии, которое позволяет выпускать качественный продукт. В конечном итоге целью является финансовая прибыль. Если на предприятии не удается достичь этих целей, то его существование находится под вопросом.

    Управление аварийными сигналами - это процесс, а не схема, - подводит итог Гэртнер из Invensys. - Это то же самое, что и производственная безопасность. Это - постоянный процесс, он никогда не заканчивается. Мы уже осознали высокую стоимость низкой эффективности и руководители предприятий больше не хотят за нее расплачиваться”.

    Автор: Джини Катцель, Control Engineering

    [ http://controlengrussia.com/artykul/article/hmi-upravlenie-avariinymi-signalami/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > alarm management

  • 15 switch

    1. переключатель (в программе)
    2. переключатель
    3. коммутационный аппарат
    4. коммутатор (сети и системы связи)
    5. коммутатор (в вычислительной сети)
    6. коммутатор
    7. выключатель

     

    выключатель
    Коммутационный электрический аппарат, имеющий два коммутационных положения или состояния и предназначенный для включении и отключения тока.
    Примечание. Под выключателем обычно понимают контактный аппарат без самовозврата. В остальных случаях термин должен быть дополнен поясняющими словами, например, «выключатель с самовозвратом», «выключатель тиристорный» и т. д.
    [ ГОСТ 17703-72]

    выключатель
    Контактный коммутационный аппарат, способный включать, проводить и отключать токи при нормальных условиях в цепи, а также включать, проводить в течение нормированного времени и отключать токи при нормированных анормальных условиях в цепи, таких как короткое замыкание.
    [ ГОСТ Р 52565-2006]

    выключатель
    Устройство для включения и отключения тока и напряжения в одной или более электрических цепях.
    Примечание. При отсутствии других указаний под понятиями «напряжение» и «ток» подразумевают их среднеквадратичные значения.
    [ ГОСТ Р 51324.1-2005]

    выключатель

    Прибор для включения и отключения электрического оборудования и устройств
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    EN

    (on-off) switch
    switch for alternatively closing and opening one or more electric circuits
    Source: 581-10-01 MOD
    [IEV number 151-12-23]

    FR

    interrupteur, m
    commutateur destiné à fermer et ouvrir alternativement un ou plusieurs circuits électriques
    Source: 581-10-01 MOD
    [IEV number 151-12-23]

    При отключении воздушных и кабельных линий тупикового питания первым рекомендуется отключать выключатель со стороны нагрузки, вторым — со стороны питания.
    [РД 153-34.0-20.505-2001]

    ... так чтобы она с меньшей выдержкой времени отключала выключатели с той стороны, на которой защита отсутствует;
    [ПУЭ]

    б) блокировка между выключателями нагрузки или разъединителем и заземляющим разъединителем, не позволяющая включать выключатель нагрузки или разъединитель при включенном заземляющем разъединителе и включать заземляющий разъединитель при включенном выключателе нагрузки или разъединителе;
    [ ГОСТ 12.2.007.4-75]

    Испытания изоляции выключателей и разъединителей должны быть проведены при включенном и отключенном положениях.
    [ ГОСТ 1516_1-76]
     


    Выключатели предназначены для оперативной и аварийной коммутации в энергосистемах, т.е. выполнения операций включения и отключения отдельных цепей при ручном или автоматическом управлении. Во включенном состоянии выключатели должны беспрепятственно пропускать токи нагрузки. Характер режима работы этих аппаратов несколько необычен: нормальным для них считается как включенное состояние, когда они обтекаются током нагрузки, так и отключенное, при котором они обеспечивают необходимую электрическую изоляцию между разомкнутыми участками цепи. Коммутация цепи, осуществляемая при переключении выключателя из одного положения в другое, производится нерегулярно, время от времени, а выполнение им специфических требований по отключению возникающего в цепи короткого замыкания чрезвычайно редко. Выключатели должны надежно выполнять свои функции в течение срока службы, находясь в любом из указанных состояний, и одновременно быть всегда готовыми к мгновенному эффективному выполнению любых коммутационных операций, часто после длительного пребывания в неподвижном состоянии. Отсюда следует, что они должны иметь очень высокий коэффициент готовности: при малой продолжительности процессов коммутации (несколько минут в год) должна быть обеспечена постоянная готовность к осуществлению коммутаций.
    [ http://relay-protection.ru/content/view/46/8/]

    Тематики

    Действия

    Сопутствующие термины

    EN

    DE

    FR

     

    коммутатор
    -

    Коммутатор (англ. Switch) -
    в переводе с англ. означает переключатель. Это многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами. Встроенное в него программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя портами, независимо от всех остальных портов устройства.

    Одновременно с разработкой новых, более высокоскоростных технологий передачи данных перед производителями компьютерного оборудования по-прежнему стояла задача найти какие-либо способы увеличения производительности локальных сетей Ethernet старого образца, минимизировав при этом как финансовые затраты на приобретение новых устройств, так и технологические затраты на модернизацию уже имеющейся сети. Поскольку класс 10Base2 был единодушно признан всеми разработчиками "вымирающим", эксперты сосредоточились на технологии 10BaseT. И подходящее решение вскоре было найдено.

    Как известно, стандарт Ethernet подразумевает использование алгоритма широковещательной передачи данных. Это означает, что в заголовке любого пересылаемого по сети блока данных присутствует информация о конечном получателе этого блока, и программное обеспечение каждого компьютера локальной сети, принимая такой пакет, всякий раз анализирует его содержимое, пытаясь "выяснить", стоит ли передать данные протоколам более высокого уровня (если принятый блок информации предназначен именно этому компьютеру) или ретранслировать его обратно в сеть (если блок данных направляется на другую машину). Уже одно это заметно замедляет работу всей локальной сети. А если принять во внимание тот факт, что устройства, используемые в качестве центрального модуля локальных сетей с топологией "звезда" - концентраторы (хабы) - обеспечивают не параллельную, а последовательную передачу данных, то мы обнаруживаем еще одно "слабое звено", которое не только снижает скорость всей системы, но и нередко становится причиной "заторов" в случаях, когда, например, на один и тот же узел одновременно отсылается несколько потоков данных от разных компьютеров-отправителей. Если возложить задачу первоначальной сортировки пакетов на хаб, то эту проблему можно было бы частично решить. Это было проделано, и в результате появилось устройство, названное switch, или коммутатор.

    Switch полностью заменяет в структуре локальной сети 10BaseT хаб, да и выглядят эти два устройства практически одинаково, однако принцип работы коммутатора имеет целый ряд существенных различий. Основное различие заключается в том, что встроенное в switch программное обеспечение способно самостоятельно анализировать содержимое пересылаемых по сети блоков данных и обеспечивать прямую передачу информации между любыми двумя из своих портов независимо от всех остальных портов устройства.

    Эту ситуацию можно проиллюстрировать на простом примере. Предположим, у нас имеется коммутатор, оснащенный 16 портами. К порту 1 подключен компьютер А, который передает некую последовательность данных компьютеру С, присоединенному к 16-му порту. В отличие от хаба, получив этот пакет данных, коммутатор не ретранслирует его по всем имеющимся в его распоряжении портам в надежде, что рано или поздно он достигнет адресата, а проанализировав содержащуюся в пакете информацию, передает его непосредственно на 16-й порт. В то же самое время на порт 9 коммутатора приходит блок данных из другого сегмента локальной сети 10BaseT, подключенного к устройству через собственный хаб. Поскольку этот блок адресован компьютеру В, он сразу отправляется на порт 3, к которому тот присоединен.

    Следует понимать, что эти две операции коммутатор выполняет одновременно и независимо друг от друга. Очевидно, что при наличии 16 портов мы можем одновременно направлять через коммутатор 8 пакетов данных, поскольку порты задействуются парами. Таким образом, суммарная пропускная способность данного устройства составит 8 х 10 = 80 Мбит/с, что существенно ускорит работу сети, в то время как на каждом отдельном подключении сохранится стандартное значение 10 Мбит/с. Другими словами, при использовании коммутатора мы уменьшаем время прохождения пакетов через сетевую систему, не увеличивая фактическую скорость соединения.

    Итак, в отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству (адресату). В результате уменьшается трафик и повышается общая пропускная способность, а эти два фактора являются критическими с учетом растущих требований к полосе пропускания сети со стороны современных приложений.

    Коммутация популярна как простой, недорогой метод повышения доступной полосы пропускания сети. Современные коммутаторы нередко поддерживают такие средства, как назначение приоритетов трафика (что особенно важно при передаче в сети речи или видео), функции управления сетью и управление многоадресной рассылкой.

    Приведем некоторые общие характеристики коммутаторов:защита с помощью брандмауэров;

    • кэширование Web-данных, поддержка высокоскоростных гигабитных соединений;
    • расширенные возможности сетевой телефонии;
    • защита настольных компьютеров и сетевое управление;
    • фильтрация многоадресного трафика для более эффективного использования полосы пропускания при работе с видеотрафиком;
    • адаптивная буферизация портов с распределением памяти между буферами портов в реальном времени, обеспечивающая автоматическую оптимизацию производительности в зависимости от сетевого трафика;
    • управление потоками на основе стандартов для обеспечения максимальной производительности и минимизации потерь пакетов при большой загрузке сети;
    • поддержка объединения каналов для создания единого высокоскоростного канала связи с другим коммутатором или магистральной сетью;
    • автоматическое определение полу/полнодуплексного режима на всех портах, обеспечивающее максимальную производительность без ручной настройки;
    • порты 10/100 Мбит/с с автоматическим определением скорости передачи для каждого порта автоматически настраиваются на скорость подключенного устройства;
    • встроенная система контроля и управления позволяет уполномоченным администраторам осуществлять поиск и устранение неисправностей и настройку стека из любого места;
    • поддержка отказоустойчивых соединений, а также дополнительных резервных блоков питания.


    [ http://sharovt.narod.ru/l10.htm]

    Тематики

    EN

     

    коммутатор (сети и системы связи)
    Активный сетевой компонент, который соединяет две или несколько подсетей, которые, в свою очередь, могут состоять из сегментов, соединенных повторителями.
    Примечание. Коммутаторы устанавливают границы для так называемых областей коллизий. Между сетями, разделенными коммутаторами, коллизии невозможны; пакеты, направляемые на конкретную подсеть, на другие подсети не попадают. Для этого коммутаторы должны знать адреса оборудования подключенных станций. Коллизий в сети можно полностью избежать в том случае, если к порту коммутатора подключен только один активный сетевой компонент.
    [ ГОСТ Р 54325-2011 (IEC/TS 61850-2:2003)]

    EN

    switch
    active network component. Switches connect two or more sub networks, which themselves could be built of several segments connected by repeaters. Switches establish the borders for so called collision domains. Collisions cannot take place between networks divided by switches, data packets destined to a specific sub network do not appear on the other sub networks. To achieve this, switches must have knowledge of the hardware addresses of the connected stations. In cases where only one active network component is connected to a switch port, collisions on the network can be avoided
    [IEC 61850-2, ed. 1.0 (2003-08)]

    Тематики

    EN

     

    коммутационный аппарат
    Аппарат, предназначенный для включения или отключения тока в одной или нескольких электрических цепях.
    МЭК 60050(441-14-01).
    Примечание.  Коммутационный аппарат может совершать одну из этих операций или обе
    [ ГОСТ Р 50030. 1-2000 ( МЭК 60947-1-99)]

    коммутационный аппарат
    Электрический аппарат, предназначенный для коммутации электрической цепи и снятия напряжения с части электроустановки (выключатель, выключатель нагрузки, отделитель, разъединитель, автомат, рубильник, пакетный выключатель, предохранитель и т.п.).
    [ПОТ Р М-016-2001]
    [РД 153-34.0-03.150-00]

    EN

    switching device
    a device designed to make or break the current in one or more electric circuits
    [IEV number 441-14-01]

    FR

    appareil de connexion
    appareil destiné à établir ou à interrompre le courant dans un ou plusieurs circuits électriques
    [IEV number 441-14-01]

    Тематики

    • аппарат, изделие, устройство...

    EN

    DE

    FR

     

    переключатель
    Контактный коммутационный аппарат, предназначенный для переключения электрических цепей.
    [ ГОСТ 17703-72]

    переключатель
    коммутатор
    -
    [IEV number 151-12-22]

    EN

    switch
    device for changing the electric connections among its terminals
    [IEV number 151-12-22]

    FR

    commutateur (1), m
    dispositif destiné à modifier les connexions électriques entre ses bornes
    [IEV number 151-12-22]

    Тематики

    • аппарат, изделие, устройство...
    • выключатель, переключатель

    Классификация

    >>>

    EN

    DE

    FR

     

    переключатель (в программе)
    Управляемый флажком выбор одного перехода из группы возможных переходов в программе.
    [ ГОСТ 19781-90]

    Тематики

    • обеспеч. систем обраб. информ. программное

    EN

    3.44 коммутатор (switch): Устройство, обеспечивающее возможность соединения сетевых устройств посредством внутренних механизмов коммутации.

    Примечание - В отличие от других соединительных устройств локальной сети (например, концентраторов) используемая в коммутаторах технология устанавливает соединения на основе «точка-точка». Это обеспечивает возможность того, чтобы сетевой трафик был виден только адресованным сетевым устройствам, и делает возможным одновременное существование нескольких соединений. Технология коммутации обычно может быть реализована на втором или третьем уровне эталонной модели взаимодействия открытых систем.

    Источник: ГОСТ Р ИСО/МЭК 18028-1-2008: Информационная технология. Методы и средства обеспечения безопасности. Сетевая безопасность информационных технологий. Часть 1. Менеджмент сетевой безопасности оригинал документа

    3.39 коммутатор (switch): Устройство, обеспечивающее соединение сетевых устройств посредством внутренних механизмов коммутации, с технологией коммутации, обычно реализованной на втором или третьем уровне эталонной модели взаимодействия открытых систем.

    Примечание - Коммутаторы отличаются от других соединительных устройств локальной сети (например, концентраторов), так как используемая в коммутаторах технология устанавливает соединения на основе «точка - точка».

    Источник: ГОСТ Р ИСО/МЭК 27033-1-2011: Информационная технология. Методы и средства обеспечения безопасности. Безопасность сетей. Часть 1. Обзор и концепции оригинал документа

    3.1 выключатель (switch): Устройство для включения и отключения тока и напряжения1) в одной или более электрических цепях.

    1) При отсутствии других указаний под понятиями «напряжение» и «ток» подразумевают их среднеквадратичные значения.

    Источник: ГОСТ Р 51324.1-2005: Выключатели для бытовых и аналогичных стационарных электрических установок. Часть 1. Общие требования и методы испытаний оригинал документа

    72. Переключатель (в программе)

    Switch

    Управляемый флажком выбор одного перехода из группы возможных переходов в программе

    Источник: ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > switch

  • 16 spike

    1. шип
    2. костыль
    3. импульсное повышение электропитания
    4. импульсное перенапряжение
    5. заострённый стержень
    6. выброс
    7. амплитуда (при резонансе)

     

    амплитуда (при резонансе)
    импульсное повышение электропитания
    бросок питания
    импульсное повышение напряжения


    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    Синонимы

    EN

     

    выброс
    Элемент совокупности значений, который несовместим с остальными элементами данной совокупности.
    Примечание. Статистические критерии (меры и уровни значимости), используемые для идентификации выбросов в экспериментах по оценке правильности и прецизионности, описаны в ГОСТ Р ИСО 5725-2.
    [ ГОСТ Р ИСО 5725-1-2002]

    выброс
    всплеск
    короткий импульс
    "пичок"

    -
    [Лугинский Я. Н. и др. Англо-русский словарь по электротехнике и электроэнергетике. 2-е издание - М.: РУССО, 1995 - 616 с.]

    Тематики

    • метрология, основные понятия

    Синонимы

    EN

     

    заострённый стержень
    заострять
    забивать


    [ http://slovarionline.ru/anglo_russkiy_slovar_neftegazovoy_promyishlennosti/]

    Тематики

    Синонимы

    EN

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

     

    импульсное повышение электропитания
    Обычно с амплитудой не менее 100 % от номинального и длительностью 0,5...100 мкс.
    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    костыль
    Крепёжная деталь в виде стального толстого стержня с головкой на одном конце и остриём на другом, служащая для прикрепления рельса к деревянной шпале или брусу
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    EN

    DE

    FR

     

    шип (11)
    Твердый профилированный стержень, устанавливаемый в протекторе и предназначенный для повышения сцепления пневматической шины с обледеневшей дорожной поверхностью.
    3688
    [ ГОСТ 22374-77]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > spike

  • 17 surge

    1. помпаж
    2. перенапряжение
    3. колебание (числа оборотов турбины)
    4. импульсное перенапряжение
    5. значительное колебание оборотов (двигателя)
    6. гидравлический удар
    7. выброс тока
    8. выброс напряжения
    9. бросок напряжения

     

    бросок напряжения
    Волна напряжения переходного процесса, распространяющаяся по линии или по цепи и характеризующаяся быстрым нарастанием, за которым следует более медленное снижение напряжения (МСЭ-Т K.43, МСЭ-Т K.48).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    выброс напряжения
    Динамическое изменение напряжения в сети электропитания в виде повышения напряжения за верхний допустимый предел.
    [ ГОСТ 19542-93

    Выброс напряжения – динамическое кратковременное отклонение напряжения с последующим возвращением к исходному значению.

    В отличие от заброса напряжения причинами выброса напряжения могут быть не только изменение нагрузки, но и повреждения электрических сетей, процессы коммутации и др.
    С точки зрения электромагнитной совместимости выброс напряжения рассматривается как помеха, воздействующая на работу технического средства. По длительности и амплитуде выброса напряжения нормативные документы различают несколько степеней жесткости испытаний.

    При испытаниях на устойчивость ТС должно быть подвергнуто воздействию выбросов напряжения не менее трёх раз, с интервалом между ними не менее 10 с.
    Информация об устойчивости цифровых устройств релейной защиты к выбросам напряжения содержится в работе [3].

    Литература
    1. ГОСТ Р 51317.4.1-99 (МЭК 61000-4-11-94). Устойчивость к динамическим изменениям напряжения электропитания. Требования и методы испытаний.
    2. ГОСТ Р 50932-96 Совместимость технических средств электромагнитная. Устойчивость оборудования проводной связи к электромагнитным помехам. Требования и методы испытаний
    3. Захаров О.Г. Требования к портам оперативного питания в технических условиях цифровых устройств релейной защиты. // Вести в электроэнергетике. №5, 2010.//Статью также можно прочесть и на портале «Всё о релейной защите» http://www.rza.org.ua
    4. ГОСТ 23875-88 Качество электрической энергии.Термины и определения [2].
    5. РД 34.35.310-97. Общие технические требования к микропроцессорным устройствам защиты и автоматики энергосистем. М.: ОРГГЭС, 1997 (с изменением №1).

    [ http://maximarsenev.narod.ru/links.html]
     

    Тематики

    EN

     

    выброс тока
    бросок тока
    экстраток


    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    Синонимы

    EN

     

    гидравлический удар
    Резкое повышение или понижение давления движущейся жидкости при внезапном уменьшении или увеличении скорости потока
    [ ГОСТ 26883-86]

    гидравлический удар
    Удар, создаваемый путем повышения или понижения гидромеханического давления в напорном трубопроводе, вызываемого изменением во времени скорости движения жидкости (газа) в сечении трубопровода.
    [ ГОСТ 15528-86]

    гидравлический удар
    Повышение или понижение гидродинамического давления в напорном трубопроводе, вызванное резким изменением во времени скорости движения жидкости в каком-либо сечении трубопровода.
    Примечание
    Гидравлический удар имеет место при открытии или закрытии затворов, направляющих аппаратов турбин и т.п.
    [СО 34.21.308-2005]

    удар гидравлический
    Резкое повышение давления жидкости в трубопроводе при внезапном изменении скорости потока в случае остановки насосов или быстрого перекрытия трубопровода
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

     

    колебание (числа оборотов турбины)

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    перенапряжение в системе электроснабжения
    Превышение напряжения над наибольшим рабочим напряжением, установленным для данного электрооборудования.
    [ ГОСТ 23875-88]

    перенапряжение
    Напряжение между двумя точками электротехнического изделия (устройства), значение которого превосходит наибольшее рабочее значение напряжения.
    [ ГОСТ 18311-80]

    перенапряжение (в сети)
    Любое напряжение между одной фазой и землей или между фазами, имеющее значение, превышающее соответствующий пик наибольшего рабочего напряжения оборудования
    [ ГОСТ Р 52565-2006]

    перенапряжение
    Всякое повышение напряжения сверх амплитуды длительно допустимого рабочего фазного напряжения.
    [Методические указания по защите распределительных электрических сетей напряжением 0,4-10 кВ от грозовых перенапряжений]

    перенапряжение
    Временное увеличение напряжения в конкретной точке электрической системы выше порогового значения.
    [ ГОСТ Р 51317.4.30-2008 (МЭК 61000-4-30:2008)]

    перенапряжение
    Возникновение избыточного напряжения, возникающего при сбросе нагрузки или кратковременном воздействии мощных помех. Одним из основных источников перенапряжения являются грозовые разряды в атмосфере, которые могут повредить интерфейсное оборудование, подключенное к кабельным линиям связи.
    [Л.М. Невдяев. Телекоммуникационные технологии. Англо-русский толковый словарь-справочник. Под редакцией Ю.М. Горностаева. Москва, 2002]


    перенапряжение
    -
    [IEV number 151-15-27]

    EN

    over-voltage
    over-tension

    voltage the value of which exceeds a specified limiting value
    [IEV number 151-15-27]

    voltage swell
    temporary increase of the voltage magnitude at a point in the electrical system above a threshold
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    FR

    surtension, f
    tension électrique dont la valeur dépasse une valeur limite spécifiée
    [IEV number 151-15-27]

    surtension temporaire à fréquence industrielle
    augmentation temporaire de l’amplitude de la tension en un point du réseau d’énergie électrique au-dessus d’un seuil donné
    [IEC 61000-4-30, ed. 2.0 (2008-10)]

    Тематики

    Синонимы

    Сопутствующие термины

    EN

    DE

    FR

    Смотри также

     

    помпаж
    Неустойчивый режим работы турбокомпрессора, характеризующийся последовательно чередующимся нагнетанием газа в сеть и выбрасыванием газа из сети на всасывание.
    [ ГОСТ 28567-90]

    Тематики

    EN

    3.1.24 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-2-2010: Менеджмент риска. Защита от молнии. Часть 2. Оценка риска оригинал документа

    3.35 импульсное перенапряжение (surge): Резкий подъем напряжения, вызванный электромагнитным импульсом удара молнии и проявляющийся в виде повышения электрического напряжения или тока до значений, представляющих опасность для изоляции или потребителя.

    Источник: ГОСТ Р МЭК 62305-1-2010: Менеджмент риска. Защита от молнии. Часть 1. Общие принципы оригинал документа

    Англо-русский словарь нормативно-технической терминологии > surge

  • 18 surge voltage

    1. перенапряжение (конденсатора)
    2. импульсное перенапряжение
    3. импульсное напряжение
    4. бросок напряжения

     

    бросок напряжения
    Волна напряжения переходного процесса, распространяющаяся по линии или по цепи и характеризующаяся быстрым нарастанием, за которым следует более медленное снижение напряжения (МСЭ-Т K.43, МСЭ-Т K.48).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    импульсное напряжение

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

     

    перенапряжение (конденсатора)

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > surge voltage

  • 19 power surge

    1. наброс мощности
    2. импульсное перенапряжение
    3. выброс мощности

     

    выброс мощности

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

     

    наброс мощности

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > power surge

  • 20 damaging surge

    1. импульсное перенапряжение

     

    импульсное перенапряжение
    В настоящее время в различных литературных источниках для описания процесса резкого повышения напряжения используются следующие термины:

    • перенапряжение,
    • временное перенапряжение,
    • импульс напряжения,
    • импульсная электромагнитная помеха,
    • микросекундная импульсная помеха.

    Мы в своей работе будем использовать термин « импульсное перенапряжение», понимая под ним резкое изменение напряжения с последующим восстановлением
    амплитуды напряжения до первоначального или близкого к нему уровня за промежуток времени до нескольких миллисекунд вызываемое коммутационными процессами в электрической сети или молниевыми разрядами
    .
    В соответствии с классификацией электромагнитных помех [ ГОСТ Р 51317.2.5-2000] указанные помехи относятся к кондуктивным высокочастотным переходным электромагнитным апериодическим помехам.
    [Техническая коллекция Schneider Electric. Выпуск № 24. Рекомендации по защите низковольтного электрооборудования от импульсных перенапряжений]

    EN

    surge
    spike

    Sharp high voltage increase (lasting up to 1mSec).
    [ http://www.upsonnet.com/UPS-Glossary/]

    Параллельные тексты EN-RU

    The Line-R not only adjusts voltages to safe levels, but also provides surge protection against electrical surges and spikes - even lightning.
    [APC]

    Автоматический регулятор напряжения Line-R поддерживает напряжение в заданных пределах и защищает цепь от импульсных перенапряжений, в том числе вызванных грозовыми разрядами.
    [Перевод Интент]


    Surges are caused by nearby lightning activity and motor load switching
    created by air conditioners, elevators, refrigerators, and so on.

    [APC]


    ВОПРОС: ЧТО ЯВЛЯЕТСЯ ИСТОЧНИКОМ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ И ПОМЕХ?

    Основных источников импульсов перенапряжений - всего два.
    1. Переходные процессы в электрической цепи, возникающие вследствии коммутации электроустановок и мощных нагрузок.
    2. Атмосферный явления - разряды молнии во время грозы

    ВОПРОС: КАК ОПАСНОЕ ИМПУЛЬСНОЕ ПЕРЕНАПРЯЖЕНИЕ МОЖЕТ ПОПАСТЬ В МОЮ СЕТЬ И НАРУШИТЬ РАБОТУ ОБОРУДОВАНИЯ?

    Импульс перенапряжения может пройти непосредственно по электрическим проводам или шине заземления - это кондуктивный путь проникновения.
    Электромагнитное поле, возникающее в результате импульса тока, индуцирует наведенное напряжение на всех металлических конструкциях, включая электрические линии - это индуктивный путь попадания опасных импульсов перенапряжения на защищаемый объект.

    ВОПРОС: ПОЧЕМУ ПРОБЛЕМА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ ОСТРО ВСТАЛА ИМЕННО В ПОСЛЕДНЕЕ ВРЕМЯ?

    Эта проблема приобрела актуальность в связи с интенсивным внедрением чувствительной электроники во все сферы жизни. Учитывая возросшее количество информационных линий (связь, телевидение, интернет, ЛВС и т.д.) как в промышленности, так и в быту, становится понятно, почему защита от импульсных перенапряжений и приобрела сейчас такую актуальность.

    [ http://www.artterm-m.ru/index.php/zashitaseteji1/faquzip]


     

    Защита от импульсного перенапряжения. Ограничитель перенапряжения - его виды и возможности

    Перенапряжением называется любое превышение напряжения относительно максимально допустимого для данной сети. К этому виду сетевых помех относятся как перенапряжения связанные с перекосом фаз достаточно большой длительности, так и перенапряжения вызванные грозовыми разрядами с длительностью от десятков до сотен микросекунд. Методы и средства борьбы зависят от длительности и амплитуды перенапряжений. В этом отношении импульсные перенапряжения можно выделить в отдельную группу.

    Под импульсным перенапряжением понимается кратковременное, чрезвычайно высокое напряжение между фазами или фазой и землей с длительностью, как правило, до 1 мс.

    Грозовые разряды - мощные импульсные перенапряжения возникающие в результате прямого попадания молнии в сеть электропитания, громоотвод или импульс от разряда молнии на расстоянии до 1,5 км приводящий к выходу из строя электрооборудования или сбою в работе аппаратуры. Прямое попадание характеризуется мгновенными импульсными токами до 100 кА с длительностью разряда до 1 мС.

    При наличии системы громоотвода импульс разряда распределяется между громоотводом, сетью питания, линиями связи и бытовыми коммуникациями. Характер распределения во многом зависит от конструкции здания, прокладки линий и коммуникаций.

    4957

    Переключения в энергосети вызывают серию импульсных перенапряжений различной мощности, сопровождающуюся радиочастотными помехами широкого спектра. Природа возникновения помех приведена на примере ниже.

    Например при отключении разделительного трансформатора мощностью 1кВА 220\220 В от сети вся запасенная трансформатором энергия "выбрасывается" в нагрузку в виде высоковольтного импульса напряжением до 2 кВ.

    Мощности трансформаторов в энергосети значительно больше, мощнее и выбросы. Кроме того переключения сопровождаются возникновением дуги, являющейся источником радиочастотных помех.

    Электростатический заряд, накапливающийся при работе технологического оборудования интересен тем, что хоть и имеет небольшую энергию, но разряжается в непредсказуемом месте.

    Форма и амплитуда импульсного перенапряжения зависят не только от источника помехи, но и от параметров самой сети. Не существует два одинаковых случая импульсного перенапряжения, но для производства и испытания устройств защиты введена стандартизация ряда характеристик тока, напряжения и формы перенапряжения для различных случаев применения.

    Так для имитации тока разряда молнии применяется импульс тока 10/350 мкс, а для имитации косвенного воздействия молнии и различных коммутационных перенапряжений импульс тока с временными характеристиками 8/20 мкс.

    Таким образом, если сравнить два устройства с максимальным импульсным током разряда 20 кА при 10/ 350 мкс и 20 кА при импульсе 8/20 мкс у второго, то реальная "мощность" первого примерно в 20 раз больше.
     

    Существует четыре основных типа устройств защиты от импульсного перенапряжения:

    1. Разрядник
    Представляет собой ограничитель перенапряжения из двух токопроводящих пластин с калиброванным зазором. При существенном повышении напряжения между пластинами возникает дуговой разряд, обеспечивающий сброс высоковольтного импульса на землю. По исполнению разрядники делятся на воздушные, воздушные многоэлектродные и газовые. В газовом разряднике дуговая камера заполнена инертным газом низкого давления. Благодаря этому их параметры мало зависят от внешних условий (влажность, температура, запыленность и т.д.) кроме этого газовые разрядники имеют экстремально высокое сопротивление (около 10 ГОм), что позволяет их применять для защиты от перенапряжения высокочастотных устройств до нескольких ГГц.

    При установке воздушных разрядников следует учитывать выброс горячего ионизированного газа из дуговой камеры, что особенно важно при установке в пластиковые щитовые конструкции. В общем эти правила сводятся к схеме установки представленной ниже.

    Типовое напряжение срабатывания в для разрядников составляет 1,5 - 4 кВ (для сети 220/380 В 50 Гц). Время срабатывания порядка 100 нс. Максимальный ток при разряде для различных исполнений от 45 до 60 кА при длительности импульса 10/350 мкс. Устройства выполняются как в виде отдельных элементов для установки в щиты, так и в виде модуля для установки на DIN - рейку. Отдельную группу составляют разрядники в виде элементов для установки на платы с токами разряда от 1 до 20 кА (8/20 мкс).

    2. Варистор
    Керамический элемент, у которого резко падает сопротивление при превышении определенного напряжения. Напряжение срабатывания 470 - 560 В (для сети 220/380 В 50 Гц).

    Время срабатывания менее 25 нс. Максимальный импульсный ток от 2 до 40 кА при длительности импульса 8/20 мкс.

    Устройства выполняются как в виде отдельных элементов для установки в радиоаппаратуру, так и в виде DIN - модуля для установки в силовые щиты.

    3. Разделительный трансформатор
    Эффективный ограничитель перенапряжения - силовой 50 герцовый трансформатор с раздельными обмотками и равными входным и выходным напряжениями. Трансформатор просто не способен передать столь короткий высоковольтный импульс во вторичную обмотку и благодаря этому свойству является в некоторой степени идеальной защитой от импульсного перенапряжения.

    Однако при прямом попадании молнии в электросеть может нарушиться целостность изоляции первичной обмотки и трансформатор выходит из строя.

    4. Защитный диод
    Защита от перенапряжения для аппаратуры связи. Обладает высокой скоростью срабатывания (менее 1 нс) и разрядным током 1 кА при токовом импульсе 8/20 мкс.

    Все четыре выше описанные ограничителя перенапряжения имеют свои достоинства и недостатки. Если сравнить разрядник и варистор с одинаковым максимальным импульсным током и обратить внимание на длительность тестового импульса, то становится ясно, что разрядник способен поглотить энергию на два порядка больше, чем варистор. Зато варистор срабатывает быстрее, напряжение срабатывания существенно ниже и гораздо меньше помех при работе.

    Разделительный трансформатор, при определенных условиях, имеет безграничный ресурс по защите нагрузки от импульсного перенапряжения (у варисторов и разрядников при срабатывании происходит постепенное разрушение материала элемента), но для сети 100 кВА требуется трансформатор 100кВА (тяжелый, габаритный и довольно дорогой).

    Следует помнить, что при отключении первичной сети трансформатор сам по себе генерирует высоковольтный выброс, что требует установки варисторов на выходе трансформатора.

    Одной из серьезных проблем в процессе организации защиты оборудования от грозового и коммутационного перенапряжения является то, что нормативная база в этой области до настоящего времени разработана недостаточно. Существующие нормативные документы либо содержат в себе устаревшие, не соответствующие современным условиям требования, либо рассматривают их частично, в то время как решение данного вопроса требует комплексного подхода. Некоторые документы в данный момент находятся в стадии разработки и есть надежда, что они вскоре выйдут в свет. В их основу положены основные стандарты и рекомендации Международной Электротехнической Комиссии (МЭК).

    [ http://www.higercom.ru/products/support/upimpuls.htm]
     


     

    Чем опасно импульсное перенапряжение для бытовых электроприборов?

    Изоляция любого электроприбора рассчитана на определенный уровень напряжения. Как правило электроприборы напряжением 220 – 380 В рассчитаны на импульс перенапряжения около 1000 В. А если в сети возникают перенапряжения с импульсом 3000 В? В этом случае происходит пробои изоляции. Возникает искра – ионизированный промежуток воздуха, по которому протекает электрический ток. В следствии этого – электрическая дуга, короткое замыкание и пожар.

    Заметьте, что прибой изоляции может возникнуть, даже если у вас все приборы отключены от розеток. Под напряжением в доме все равно останутся электропроводка, распределительные коробки, те же розетки. Эти элементы сети также не защищены от импульсного перенапряжения.

    Причины возникновения импульсного перенапряжения.

    Одна из причин возникновения импульсных перенапряжений это грозовые разряды (удары молнии). Коммутационные перенапряжения которые возникают в результате включения/отключения мощной нагрузки. При перекосе фаз в результате короткого замыкания в сети.

    Защита дома от импульсных перенапряжений

    Избавиться от импульсных перенапряжений - невозможно, но для того чтобы предотвратить пробой изоляции существуют устройства, которые снижают величину импульсного перенапряжения до безопасной величины.

    Такими устройствами защиты являются УЗИП - устройство защиты от импульсных перенапряжений.

    Существует частичная и полная защита устройствами УЗИП.

    Частичная защита
    подразумевает защиту непосредственно от пробоя изоляции (возникновения пожара), в этом случае достаточно установить один прибор УЗИП на вводе электрощитка (защита грубого уровня).

    При полной защите
    УЗИП устанавливается не только на вводе, но и возле каждого потребителя домашней электросети (телевизора, компьютера, холодильника и т.д.) Такой способ установки УЗИП дает более надежную защиту электрооборудованию.

    [ Источник]
     

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > damaging surge

См. также в других словарях:

  • Вакцина для профилактики гриппа — Основная статья: Грипп Вакцина для профилактики гриппа, лекарственный препарат из группы биологических препаратов, обеспечивающий формирование краткосрочного иммунитета к вирусу гриппа, считается одним из самых эффективных средств профилактики… …   Википедия

  • Комфортность природных условий для жизни населения — Для комплексной оценки условий, в которых протекает повседневная жизнедеятельность населения его быт, труд, отдых, формируется его здоровье разработана система показателей, получившая название уровень или степень комфортности территории. Степень… …   Экология человека

  • Витаминно-минеральные комплексы для зрения — (витамины для зрения)  витамины для укрепления зрения и профилактики заболеваний глаз, принимающие участие в зрительных процессах: витамины А, С, Е и В2, цинк, растительные экстракты, каротиноиды (бета каротин, лютеин, ликопин). Важность… …   Википедия

  • Фактор риска для здоровья — Как мы уже выяснили, любая функция раскрывает и развивает свои резервы при одном условии постоянной тренировке. А вот причин, способных уничтожить «ранние ростки» наших резервов на корню, много: хронические интоксикации, алкоголизм, курение,… …   Педагогическая энциклопедия «Воспитание здорового образа жизни учащихся»

  • Контрацепция для подростков —         Почему подростки не предохраняются? Основная причина потому что им кажется, что все неприятности происходят с кем то другим. Поверьте этим другим можете оказаться Вы. Кроме того, часто подростки просто не имеют необходимых знаний о… …   Сексологическая энциклопедия

  • ГОСТ 30457.3-2006: Акустика. Определение уровней звуковой мощности источников шума по интенсивности звука. Часть 3. Точный метод для измерения сканированием — Терминология ГОСТ 30457.3 2006: Акустика. Определение уровней звуковой мощности источников шума по интенсивности звука. Часть 3. Точный метод для измерения сканированием оригинал документа:   соответствующая мгновенная скорость частиц в той же… …   Словарь-справочник терминов нормативно-технической документации

  • Загрузочный люк для белья — Все стиральные машины Samsung имеют загрузочный люк диаметром 30 см, угол открытия которого составляет 170 180° (в зависимости от модели), что облегчает загрузку и выгрузку белья. После начала стирки люк блокируется и открыть его становится… …   Глоссарий терминов бытовой и компьютерной техники Samsung

  • Глава 1. СЕРЬЕЗНАЯ, ОБЪЯСНЯЮЩАЯ: КОМУ ОТКРЫТА ДВЕРЬ К ПОВАРСКОМУ РЕМЕСЛУ И ПОЧЕМУ ЭТО РЕМЕСЛО - СЛОЖНОЕ, ТРУДНОЕ ИСКУССТВО —         Почему же так много молодых людей не испытывают ни малейшего желания готовить пищу: ни на работе (быть поваром), ни дома, для себя? Причины выдвигаются разные, но все они, по существу, сводятся к одному к нежеланию заниматься тем, о чем,… …   Большая энциклопедия кулинарного искусства

  • Тормозные системы для спуска пострадавшего подручными средствами — При спасработах подручными средствами ресурсы снаряжения чаще всего ограничены. Поэтому очень важно умение использовать минимальное количество снаряжения с максимальной эффективностью. Подручные спусковые (тормозные) системы должны отвечать… …   Энциклопедия туриста

  • Мебель для офиса — Офисная мебель – основная функциональная составляющая любого рабочего интерьера. По своим эксплуатационным признакам она относится к категории малых архитектурных форм, ориентированных на создание максимально комфортной деловой среды. Содержание… …   Википедия

  • Рынки, место для торговли — С древнейших времен у всех культурных народов, везде, где появлялись многолюдные поселения, возникала потребность сосредоточить продажу продуктов ежедневного потребления в одном или нескольких центральных пунктах, куда к определенному времени… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»